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Qubits with predominantly erasure errors present distinctive advantages for quantum error correction
(QEC) and fault-tolerant quantum computing. Logical qubits based on dual-rail encoding that exploit
erasure detection have been recently proposed in superconducting circuit architectures, with either coupled
transmons or cavities. Here, we implement a dual-rail qubit encoded in a compact, double-post
superconducting cavity. Using an auxiliary transmon, we perform erasure detection on the dual-rail
subspace. We characterize the behavior of the code space by a novel method to perform joint-Wigner
tomography. This is based on modifying the cross-Kerr interaction between the cavity modes and the
transmon. We measure an erasure rate of 3.981� 0.003 ðmsÞ−1 and a residual, postselected dephasing
error rate up to 0.17 ðmsÞ−1 within the code space. This strong hierarchy of error rates, together with the
compact and hardware-efficient nature of this novel architecture, holds promise in realizing QEC schemes
with enhanced thresholds and improved scaling.
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Introduction.—Quantum error correction (QEC), the
process of protecting quantum information from deco-
herence, is an essential ingredient toward fault-tolerant
quantum computation (FTQC). QEC involves redundantly
encoding logical qubits into an enlarged Hilbert space,
targeting coherence that significantly exceeds that of its
constituent components. QEC codes can be roughly cat-
egorized into discrete variable codes [1], such as the surface
code [2–4], or continuous variable codes, such as the
Gottesman-Kitaev-Preskill [5], binomial [6], or cat codes
[7,8]. Experimentally, bosonic QEC codes have proven to
be efficient in reducing error rates on the single logical-
qubit level [9–11], while discrete variable codes have
demonstrated suppression of logical error rates by increas-
ing code distance [12]. Hence, combining the two appro-
aches where error-corrected bosonic qubits form the base
layer of surface code architectures may be a promising
pathway toward FTQC.
Alternatively, recent studies have shown that systems

with an erasure noise channel at the base layer can reduce
the logical error rate by substantially increasing both the
threshold and distance of the outer surface code [13,14].
Erasures are leakage errors to outside the computational
subspace that are detected in real time and for which the
physical qubits that were impacted are also located in
space. Qubits predominantly subject to erasures, so-called
“erasure qubits,” have been proposed with metastable states
of neutral atoms [14–16] and dual-rail qubits based on
superconducting circuit quantum electrodynamics (cQED)
architecture [17,18]. While the dual-rail encoding has been

a subject of extensive study in the quantum optics platform
[19] and has been investigated in superconducting circuits
[20–22], it has only recently been implemented in cQED
systems in the context of erasure errors [23,24].
A successful incorporation of erasure qubits into a QEC

architecture requires a system that exhibits strong hierarchy
of errors [14]. This means that the dominant errors are
converted to erasures and the remaining Pauli and leakage
errors exhibit orders of magnitude lower rates. To this end,
superconducting cavity modes are ideal candidates to
encode a dual-rail erasure qubit, since they present natural
noise bias, with photon loss being the dominant error
mechanism [18,24]. In addition, superconducting cavities,
especially those implemented in 3D geometries, exhibit
longer lifetimes with lower intrinsic dephasing rates com-
pared to transmons. Nonetheless, the nonlinearity of
auxiliary transmons is still a necessary ingredient for the
control of cavity modes. As a result, dual-rail qubits with
cavity modes suffer from additional loss channels intro-
duced by these nonlinear elements.
In this Letter, we present a dual-rail qubit implemented in

a hardware-efficient, 3D cavity architecture—the symmet-
ric and antisymmetric eigenmodes of a double-post coaxial
superconducting aluminum cavity. The highly delocalized
field distributions of the modes allow for a compact
architecture in which a single, dispersively coupled aux-
iliary transmon provides the necessary nonlinearity for state
preparation, erasure detection, and tomography. Hence,
compared to other approaches [24], our architecture
requires fewer resources. By modifying the dispersive
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interaction between the cavity modes and the transmon
[25], we perform joint-Wigner tomography on the two
modes to characterize the erasure detection circuit. We
show that our quantum nondemolition (QND) erasure
detection scheme converts cavity photon losses to erasures
with a false-negative probability of only 0.28% per gate.
We demonstrate a strong hierarchy of error rates with
erasures occurring at a rate of 3.981� 0.003 ðmsÞ−1 and
postselected Pauli Ẑ errors at a rate of up to 0.170 ðmsÞ−1.
Moreover, postselected bit-flip or Pauli X̂ type errors occur
at a negligible rate of ∼10−4 ðmsÞ−1. These results dem-
onstrate the viability of incorporating such an erasure
detection scheme in a circuit (so-called midcircuit erasure
detection) and, consequently, use the dual-rail as an erasure
qubit in concatenation codes to enhance QEC thresholds.
Experimental system.—Figure 1(a) depicts our experi-

ment, which comprises a coaxial superconducting cavity
made of high-purity (5N) aluminum [26] with two posts of
equal length. The package hosts two modes, Alice ðâÞ and
Bob ðb̂Þ, which are the harmonic oscillators used to encode
the dual-rail qubit. An auxiliary transmon fabricated on a
sapphire chip is inserted into the package [27–30] (see
Supplemental Material [31] for full system parameters).
The delocalized electromagnetic field distribution of
Alice and Bob [Fig. 1(b)] creates coupling to the transmon
with similar strengths. This leads to a static dispersive
interaction:

Ĥ=ℏ ¼ χaqâ†âjeihej þ χbqb̂
†b̂jeihej ð1Þ

with measured cross-Kerr rates χaq=2π ¼ −0.514 MHz
and χbq=2π ¼ −0.251 MHz. This coupling enables our
erasure detection scheme. However, the residual mismatch
in cross-Kerr rates renders tomography in the combined
Hilbert space a rather challenging task [32,33].
Cross-Kerr matching.—The motivation behind matching

the cross-Kerr rates in Eq. (1) is to perform joint-Wigner
tomography on the combined Hilbert space of Alice and
Bob. The joint-Wigner function [34] given by

Wðα; βÞ ¼ 4

π2
Tr½D̂ð−α;−βÞρD̂ðα; βÞΠ̂� ð2Þ

requires the measuring the expectation value of the joint-
parity operator:

Π̂ ¼ ð−1Þâ†âþb̂†b̂ ð3Þ

of the displaced state. If χaq ¼ χbq ¼ χ, this measurement
is greatly simplified via a Ramsey-like sequence [Fig. 2(b)],
similar to the single-mode Wigner tomography. By choos-
ing the wait time such that tW ¼ π=χ, the joint parity is
mapped on to the transmon states (see Supplemental
Material [31]). To match the cross-Kerr rates, we leverage
the four-wave mixing property of the transmon [25] and
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FIG. 1. (a) Schematic of the double-post cavity, made of 5N aluminum with a transmon qubit, readout, and Purcell filter
fabricated on a sapphire chip. (b) Field distributions of the symmetric (Alice) and antisymmetric (Bob) eigenmodes of the system,
encoding the dual-rail qubit. (c) Energy-level diagram of the combined Bob-transmon system showing dispersive shifts. The purple
arrows connect the pairs of levels jn − 1; hi and jn; ei being coupled via the cross-Kerr tuning drive. (d) Avoided crossing observed
when preparing jn; ei states in Bob-transmon, sweeping pump detuning Δ with fixed amplitude Ω=2π ¼ 0.5 MHz. No drive is
applied to affect Alice-transmon coupling. Solid horizontal lines are a visual aid to the bare Fock state energies, and simulation
results are overlaid in black lines. (e) Number-split peaks of the transmon when either Alice (blue) or Bob (red) is populated with a
coherent state of amplitude α ¼ 1.5, without any pump. (f) Bob’s peaks align with that of Alice in the presence of the cross-Kerr
tuning pump with parameters ðΩ=2π;Δ=2πÞ ¼ ð0.5;−5.4Þ MHz.
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apply a microwave drive at frequency ωχ ¼ ωhe − ωb þ Δ,
with amplitude Ω. This process exchanges two photons
from the transmon with one photon each from the drive and
one of the cavities, coupling pairs of levels jn; ei ↔
jn − 1; hi. Here, jni denotes the nth Fock state of the
relevant cavity mode, and jei and jhi represent the first and
third excited states, respectively, of the transmon. By
detuning the pump by Δ, we shift the energy levels of
the Fock states from their bare values. In the χ ≪ Ω ≪ Δ
regime, this can be approximated as a change in the cross-
Kerr rate between the modes [Fig. 1(c)].
For the purposes of this Letter, we choose to tune only

χbq and keep χaq constant. We opted to match to the higher
cross-Kerr rate of Alice in order to achieve faster gate times.
This independent control of the cross-Kerr rates is possible
due to the large detuning (≈200 MHz) between the cavity
modes. The avoided crossings in Fig. 1(d) reveal the tuning
of the energy levels of the Bob-transmon system due to the
pump. We then set pump parameters ðΩ;ΔÞ such that the
cross-Kerr rates are matched. To confirm cross-Kerr match-
ing, we perform spectroscopic measurements on the trans-
mon after preparing a coherent state in either cavity mode.
Figures 1(e) and 1(f) show the effect of the pump on the
number split peaks [35] of the cavities, where Bob’s peaks
align with those of Alice. Hence, we can approximate the
interaction Hamiltonian as

ĤΣ=ℏ ≈ χðâ†âþ b̂†b̂Þjeihej ð4Þ

up to six Fock states. The extracted pumped cross-Kerr rates
were χaq=2π ¼ −0.521 MHz and χbq=2π ¼ −0.527 MHz.
We note that by increasing the pump amplitude Ω we can
potentially tune higher Fock states as well.
Erasure detection.—The dual-rail qubit is defined in the

joint Hilbert space of Alice and Bob with j þ ZLi ¼ j01i
and j − ZLi ¼ j10i as the logical code words [Fig. 2(a)].
The dominant error channel in superconducting 3D
cavity modes is single-photon loss. Photon losses in either
Alice or Bob destroy the logical dual-rail encoding
and leave the system in the error state j00i. In our sys-
tem, these errors occur at rates κa ¼ 4.454� 0.044 ðmsÞ−1
(Ta

1 ¼ 224.5� 2.2 μs) and κb ¼ 3.339� 0.018 ðmsÞ−1
(Tb

1 ¼ 299.4� 1.6 μs) for Alice and Bob, respectively.
To detect photon losses, we leverage the dispersive inter-
action between the cavity modes and the transmon
[Eq. (1)]. After initializing the system in the code space,
we query the transmon state using a frequency selective
pulse centered at its bare frequency ðωgeÞ. The transmon
state flips only when the cavity modes are in j00i (error
space). Our circuit to realize this is shown in Fig. 2(b). We
prepare the states in the code space via optimal control
pulses (OCP) [36–38], and the transmon is initialized in its
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FIG. 2. (a) Dual-rail Bloch sphere where the code words are two-mode Fock states j þ ZiL ¼ j01i and j − ZiL ¼ j10i (the first mode
is Alice, and the second mode is Bob). (b) Erasure detection using a selective π pulse centered at the transmon frequency ðX̂0

πÞ. After n
detection rounds, we perform joint-Wigner tomography on the system with the cross-Kerr matched Hamiltonian ĤΣ represented as the Σ
gate. (c) Experimental results of erasure detection for n ¼ 75 rounds after preparing the j þ XiL state. Each row is an separate run of the
circuit. Ideally, state transition from jgi → jei heralds an erasure for the dual-rail qubit. But readout infidelities and transmon errors
cause deviation from this behavior in the form of isolated “e” or “f” outcomes. (d) Experimental result of the full circuit shown in (b).
Erasure detection is performed on the j þ XiL state for n rounds before measuring the ReðαÞ-ReðβÞ joint-Wigner cut of the state. The
experiment is repeated for n ¼ 0, 10, 20, 30, 40 rounds. The initial state clearly decays to the ground state due to cavity photon loss.
Postselecting on a qubit being in “g” in the trajectory data, we can reconstruct the encoded information, visually proving faithful
conversion of photon loss to erasures.
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ground state ðjgiÞ. The selective pulse to flip the transmon
state is a long ð4σ ¼ 8 μsÞ Gaussian pulse ðX̂πÞ. This is
followed by a readout and a fast reset of the transmon state
to jgi. The entire circuit takes exactly 12 μs to execute and
should output readout result e if the cavity modes are in the
error space and g otherwise.
Figure 2(c) displays the results of performing era-

sure detection for n ¼ 75 rounds on the j þ XLi ¼
ð1= ffiffiffi

2
p Þðj01i þ j10iÞ state. Each row in the plot represents

a different experimental shot. The first row depicts a near-
ideal trajectory where the transmon state remains in jgi
until measurement round 32. Because of a photon loss
event in either cavity, the transmon frequency shifts to its
bare value, causing the X̂π gate to flip its state to jei. The
transmon remains in this state for the remainder of the time
due to the reset operation. Nonidealities arising from
readout inefficiencies and transmon errors, however, cause
many trajectories to deviate from the ideal behavior. To
characterize the erasure detection circuit under these errors,
we feed the raw trajectories to a hidden Markov model. The
model learns a state transition matrix, describing the
probability of transitions between code space and error
space at each time step, and an emission matrix, which
predicts the probability of an outcome (g=e) given a hidden
state. From this model, we extract a false-negative prob-
ability, defined as the probability of misassigning an
erasure as being within the code space, of 0.28% per
measurement. Additionally, we extract a > 99.9% measure
of QND on the cavity photon number, for our detection
scheme. This means that the erasure detection itself induces
minimal backaction compared to having no detection. This
is a crucial feature for incorporating such erasure checks in
a surface code. Finally, we note that each erasure check
accrues a deterministic phase on superpositions of states in
the dual-rail subspace. In the experiment, we calibrate this
and apply software corrections to the tomography pulses to
cancel it.
Joint tomography.—To determine the behavior of the

code space during detection, we perform direct tomography
on the cavities. Since the dual-rail code is defined in the
joint Hilbert space of Alice and Bob, we measure the joint-
Wigner function [32], using the circuit shown in Fig. 2(b).
During the waiting time ðtWÞ, we establish the cross-Kerr
matched interaction Hamiltonian by applying the pump
with the matching parameters, thereby measuring the
expectation value of the joint-parity operator. Note that
the joint-Wigner function is defined in a 4D space, since α
and β are complex numbers, representing position and
conjugate momentum variables of each mode. As a result, it
is challenging to visualize and would require an exponen-
tial number of samples to characterize accurately.
Instead, to efficiently characterize the system, we per-

form partial tomography by sparsely sampling the values of
ðα; βÞ. First, to visually verify the evolution of the states
during erasure detection, we measure a 2D cut of the full

joint-Wigner space, specifically the ReðαÞ-ReðβÞ cut with
ImðαÞ ¼ ImðβÞ ¼ 0. In the top row in Fig. 2(d), we observe
the evolution of the j þ XLi state after n ¼ 0, 10, 20, 30, 40
rounds of erasure detection. As expected, the state even-
tually decays to the error space j00i. After discarding
trajectories where erasures were detected, we are clearly
able to recover the original information [Fig. 2(d), bottom
panel]. This improvement comes at the expense of dis-
carding more data as we track the system for longer times.
Since we are measuring only a cut of the joint Wigner, we
have only partial information about the system, and it is not
enough to reconstruct the full density matrix.
Having visually confirmed that our erasure detection

scheme enables faithful recovery of the encoded informa-
tion, we proceed to quantify how good our detection
scheme is. To achieve this, we measure the logical Pauli
state vector components for the dual-rail subspace after
preparing in the six cardinal states of the Bloch sphere. This
measurement is performed using the same circuit as before
[Fig. 2(b)]. By projecting the joint-Wigner function in
Eq. (2) onto the dual-rail subspace, we extract the expect-
ation values of the Pauli operators by sampling only 16
points ðαi; βiÞ in phase space (see Supplemental Material
[31]) [32,33].
Figure 3(a) illustrates the decay of the expectation values

of the four Pauli operators, ðÎ; X̂; Ŷ; ẐÞ, for different states
on the Bloch sphere, as a function of the number of
detection rounds. The expectation values decay exponen-
tially due to the single-photon loss channels. Crucially, we
observe the decay of the identity operator ðÎÞ, indicating
that the system decays outside the code space. Averaged
over the six cardinal states on the Bloch sphere, we obtain
an erasure rate of 3.981� 0.003 ðmsÞ−1 or 4.8% per
measurement.
Discarding the trajectories where an erasure was

detected, we extract residual Pauli error rates, within the
code space. The Î and the Ẑ operator expectation values are
nearly constant, and we are able to provide an upper bound
on their decay rates of only ∼10−4 ðmsÞ−1. The postse-
lected X̂ and Ŷ operators exhibit no-jump evolution, i.e., the
conditional update of the density matrix of the system upon
measuring no photon jumps [24]. For the dual-rail qubit,
this effect causes any superposition of states to determin-
istically decay toward the cavity with lower decay rate (in
our case, Bob). In principle, it is possible to exactly cancel
this effect by designing modes with equal decay rates or by
interleaving SWAP operations between the cavities such that
the photon spends equal amounts of time in each mode
[18]. Fitting this deterministic no-jump evolution, we
extract residual dephasing rates up to 0.170 ðmsÞ−1
(≈ 0.2% per measurement). Note that we are discarding
exponentially many trajectories as we perform erasure
detection for more rounds, as seen in the survival proba-
bility plot in Fig. 3(b), which shows the number of
trajectories that survive as a function of detection rounds.
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Conclusions.—In this Letter, we demonstrated erasure
detection for a dual-rail qubit implemented in a super-
conducting double-post coaxial cavity. As a result of the
compact nature of this architecture, a single auxiliary
transmon is sufficient for erasure detection and control
of both cavity modes. We measure an average erasure rate
of 3.981� 0.003 ðmsÞ−1, which corresponds to 4.8% per
measurement, with a false-negative rate of 0.28%. In
addition, we developed a protocol to perform joint-
Wigner tomography which relies on matching the disper-
sive interaction rates between cavity modes and transmon.
From 2D cuts of the joint-Wigner function space, we
reconstruct the encoded information given the outcomes
of the erasure detection and extract the residual Pauli errors
within the dual-rail code space. We observe that dephasing
type errors dominate at a rate up to 0.170 ðmsÞ−1, 0.2% per
measurement, a result expected from the finite bit-flip rate
of the transmon and the mismatch in the cross-Kerr rates
during the erasure detection circuit. Finally, residual bit-flip
and leakage errors are negligible with an upper bound of
∼10−4 ðmsÞ−1, highlighting a clear hierarchy of rates where
erasure dominate over Pauli errors. These results, combined

with the high-fidelity beam splitters recently demonstrated
[33,39], suggest a promising pathway toward concatenating
superconducting cavity-based dual-rail qubits within a
surface code and leverage the higher threshold and favor-
able scaling with code distance. Finally, it should be
possible to further take advantage of the high noise bias
[3,40–42], of the Pauli errors in the dual-rail subspace when
designing the surface code architecture to further improve
upon the advantage of erasure detection.
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FIG. S 1. Wiring diagram Room temperature wiring for synthesizing control pulses and microwave wiring and shielding
inside the dilution refrigerator.

EXPERIMENTAL SETUP AND SAMPLE PARAMETERS

Our experimental system consists of a coaxial stub cavity [1] with two posts, made of 5N Aluminium treated with
a chemical etch to improve surface quality. The two harmonic oscillators are the two lowest frequency normal modes
of the system obtained by the hybridisation of the λ/4 modes of the individual stubs. The auxiliary transmon [2]
made of Aluminium is fabricated on a sapphire chip along with a readout resonator and a Purcell filter [3]. The chip
is inserted into a tunnel waveguide that connects to the storage cavity modes and is held in place on one side using
copper clamps. The entire package is rigidly attached to a gold-plated copper bracket that is mounted on to the base
plate of a dilution refrigerator. The bracket is surrounded by a gold-plated copper can, coated with a thin layer of
Berkeley black on the inside to absorb high frequency photons. The outer Cryoperm shield attenuates stray magnetic
fields. The top of this can is sealed with a lid with SMA feedthroughs and each seam is sealed with Indium wires.

Control pulses for the relevant modes are synthesized via Digital-Analog Converters (DACs) from a Field Pro-
grammable Gate Array (FPGA) with a baseband of DC-250MHz [4]. These signals are up-converted to the required
frequencies using IQ mixers and local oscillators (LO) which are then amplified and filtered accordingly. Fast RF
switches are used to gate the signals in each line. These are then sent into different microwave lines in the dilution refrig-
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erator each with different attenuation and filtering such that the noise temperature at relevant frequencies are around
base plate temperature (∼20mK). Readout signals are amplified via a quantum-limited SNAIL(Superconducting Non-
linear Asymmetric Inductive eLement) parametric amplifier(SPA) [5, 6], with a pump-port filter designed for efficient
pump delivery. This amplified signal is further amplified by HEMT (High Electron Mobility Transistor) amplifier
at the 4K stage and further by room temperature amplifier. This signal is then down-converted to a 50MHz signal
using an IR mixer and the same LO used to up-convert the input readout pulse. After appropriate filtering and
amplification, the Analog-Digital Converter(ADC) of the FPGA digitises, demodulates and integrates to obtain a
readout value.

Alice

Frequency ωa = 2π × 6.216GHz

Cross-Kerr shift χaq = −2π × 0.514MHz

Relaxation T1 = 224.5± 2.2 us
κa = 4.454± 0.044 (ms)−1

Dephasing T R
2 = 452.4± 8.6 us

Thermal population nth = 0.0053± 0.0002

Bob

Frequency ωb = 2π × 6.437GHz

Cross-Kerr shift χbq = −2π × 0.251MHz

Relaxation T1 = 299.4± 1.6 us
κb = 3.339± 0.018 (ms)−1

Dephasing T R
2 = 604.6± 5.2 us

Thermal population nth = 0.0086± 0.0003

Transmon

Frequency ωq = 2π × 4.681GHz

Anharmonicity α = −2π × 251MHz

Relaxation T1 = 147.3± 0.5 us

Dephasing (Ramsey) T2R = 87.2± 1.3 us

Dephasing (Echo) T2E = 129.8± 1.5 us

Thermal population nth < 0.01

Readout

Frequency ωr = 2π × 8.159GHz

Cross-Kerr shift χqr = −2π × 0.432MHz

Coupling strength κr(c) = 3.943 (µs)−1

Internal loss κr(i) = 1.030 (µs)−1

Supplementary Table I. Measured system parameters

CROSS-KERR TUNING

Deriving the effective Hamiltonian

We begin by writing the Hamiltonian of the Alice-Bob-Transmon system with a linear drive on the transmon
delivered via a capacitively coupled port. Up to the leading order in the cosine potential of the Josephson junction,
the Hamiltonian is

Ĥ0/h̄ = ωaâ
†â+ ωbb̂

†b̂+ ωq q̂
†q̂ − g4

[
ϕa(â+ â†) + ϕb(b̂+ b̂†) + ϕq(q̂ + q̂†)

]4
− iϵD cosωdt(q̂ − q̂†) (1)
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where ωi is the frequency of the i ∈ {a, b, q, d} mode representing Alice, Bob, transmon and the drive, respectively, and
g4 = EJ/4!h̄ is the coefficient of the 4th order term representing the Josephson energy. First we perform a displaced
frame transformation on the qubit to absorb the drive into the 4th order term. The Hamiltonion becomes

ĤD = D̂(α)Ĥ0D̂
†(α) + i

˙̂
D(α)D̂†(α) (2)

where D̂(α) = eαq̂
†−α∗q̂ and D̂(α)q̂D̂†(α) → q̂ − α. Choosing the displacement α = ξe−iωdt such that ξ = iϵd

ωq−ωd
,

ignoring terms oscillating at 2ωd, we can write the Hamiltonian in the displaced frame, up to constant terms, as

ĤD

h̄
= ωaâ

†â+ ωbb̂
†b̂+ ωq q̂

†q̂ − g4

[
ϕa(â+ â†) + ϕb(b̂+ b̂†) + ϕq(q̂ + q̂† + ξe−iωdt + ξ∗eiωdt)

]4
(3)

Next we move into a frame where the modes are rotating at their bare frequencies. We add a slight detuning to
Bob from its bare detuning (adding this detuning on the transmon has equivalent resolt). The unitary for this

transformation is then, Û(t) = exp
[
−i(ωaâ

†â+ (ωb −∆)b̂†b̂+ ωq q̂
†q̂)t

]
and we get the interaction Hamiltonian

ĤI

h̄
= ∆b̂†b̂− g4

[(
ϕaâe

−iωat + ϕbb̂e
−i(ωb−∆)t + ϕq q̂e

−iωqt + ϕqξe
−iωdt

)
+ h.c.

]4
(4)

where h.c. represents the hermitian conjugate of all the terms in the rounded brackets preceding it. For the cross-Kerr
tuning process we drive a 2-photon transition at the frequency ωd = 2ωq − ωb +∆. Substituting this in to the above
Hamiltonian and collecting all the static terms from the expansion of the 4th order term, with the rotating wave
approximation(RWA) applied, we get

Ĥp

h̄
= ∆b̂†b̂+

1

2

(
Ωq̂2b̂† +Ω∗q̂†2b̂

)
+

∆a
s â

†â+∆b
sb̂

†b̂+∆q
sq̂

†q̂+

χaqâ
†âq̂†q̂ + χbq b̂

†b̂q̂†q̂ + χabâ
†âb̂†b̂+

Kaa

2
â†2â2 +

Kbb

2
b̂†2b̂2 +

Kqq

2
q̂†2q̂2

(5)

where, ∆i
s = 1

2Kii|ξ|2 is the Stark-shift and Kii = − 1
2EJϕ

4
i is the self-Kerr of the i-th mode and χij = −EJϕ

2
iϕ

2
j is

the cross-Kerr between modes i and j. In the first line in the above equation, Ω = ξ∗
√

2χbqKqq is the interaction
rate of the cross-Kerr tuning process, detuned by ∆. Going into the interaction frame with respect to the transmon

self-Kerr U(t) = exp
(
−iKqq

2 tq̂†2q̂2
)
, we get

Ĥp

h̄
= ∆b̂†b̂+

[Ω
2
b̂†
(√

2 |g⟩⟨f | e−iKqqt +
√
6 |e⟩⟨h| e−3iKqqt + ..

)]
+ h.c.+

χaqâ
†âq̂†q̂ + χbq b̂

†b̂q̂†q̂ + χabâ
†âb̂†b̂+

Kaa

2
â†2â2 +

Kbb

2
b̂†2b̂2

(6)

By choosing ∆ → ∆− 3Kqq and moving into the appropriate rotating frame, we can selectively pick out the |e⟩ ↔ |h⟩
transition to address and ignore the other pumped terms under the RWA(∆ << Kqq << ωq). Hence, we get,

Ĥχ

h̄
≈ (∆− 3Kqq)b̂

†b̂+

(
Ω |e⟩⟨h| b̂† +Ω∗ |h⟩⟨e| b̂

)
+ χaqâ

†âq̂†q̂ + χbq b̂
†b̂q̂†q̂ (7)

where we’ve redefined the drive amplitude to Ω →
√

3
2Ω and dropped the negligible terms like the self-Kerr rates

of the cavities and the cross-Kerr between them. Note that the pump frequency is ωd = 2ωq − ωb − 3Kqq + ∆. By
diagonalizing the above pumped Hamiltonian, we obtain the behavior of the combined Fock states, as seen from the
fits in Fig1.(c) of the main text.
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(a) (b)

FIG. S 2. a, Chevron plot obtained after initialising the transmon in |e⟩ and Bob cavity in |1⟩ and sweeping time and frequency
of the cross-Kerr tuning pump. Fit Rabi rate Ω = 2π × 0.98 MHz. Transmon spectroscopy after preparing Alice and Bob in
states |00⟩, |01⟩ and |10⟩. The Gaussian pulse used for spectroscopy is the same one used for erasure detection. The frequency
axis referenced with respect to the bare transmon g → e frequency.

To get an intuition of how the above Hamiltonian modifies the cross-Kerr, let us consider the transmon coupled to
just Bob, expand in the Fock basis and select only the term that couples |h0⟩ ↔ |e1⟩. Here we write a simplified form
of the above Hamiltonian for this term,

Ĥp

h̄
= ∆ |e1⟩⟨e1|+Ω |e1⟩⟨h0|+Ω∗ |h0⟩⟨e1| (8)

This describes two levels coupled to each other and we can diagonalize easily to find the eigenvalues and eigenstate.
The eigenvalues are λ± = −∆

2 ± 1
2

√
∆2 + 4|Ω|2. For the limit of Ω << ∆, the lowest eigenvalue can be approximated

to the lowest order as λ+ ≈ |Ω|2/∆ and the corresponding eigenstate is |λ+⟩ =
∣∣ẽ1〉 ≈ |e1⟩ + Ω

∆ |h0⟩. For large
detunings, the hybridisation is weak and if the |h⟩ level of the transmon is never occupied, then we can approximately
rewrite the Hamiltonian as

Ĥp

h̄
≈ |Ω|2

∆

( ∣∣ẽ1〉〈ẽ1∣∣− ∣∣∣h̃0〉〈h̃0∣∣∣ ) (9)

This corresponds to modified bare energy of the state. If we now perform the same for higher Fock states it will result
in modified cross-Kerr due to the drive.

Characterizing the cross-Kerr tuning process

To characterize the cross-Kerr tuning, we prepare either of the cavities in the |1⟩ state and the transmon in |e⟩. By
applying the cross-Kerr pump with varying frequency and time, we measure the probability of the transmon to be in
|e⟩. This reveals the chevron between the levels |e1⟩ and |h0⟩ with a Rabi rate Ωh0e1. We use this method to calibrate
the strength and the stark-shifted centre frequency of the process, for either cavity modes using Eq. (6). Fig.S 2a
shows the chevron pattern of such an oscillation perform on the Bob cavity.

Gaussian pulse for erasure detection

Fig.S 2b shows transmon spectroscopy results obtained after preparing the cavities in |00⟩ , |01⟩ and |10⟩ states.
The spectroscopy is performed using a Gaussian pulse with σ = 2µs, with a total duration of 4σ = 8µs. This is the
same pulse used in the erasure detection circuit.
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DUAL-RAIL QUBIT

Encoding and error-channels

We define the dual-rail qubit in the joint-Hilbert space of Alice and Bob. The logical codewords are |+ZL⟩ = |01⟩
and |−ZL⟩ = |10⟩. Here the first mode in the ket is Alice and the second is Bob. The full error set for the code due

to error channels of the cavities is E = {Î , â, b̂, â†, b̂†, n̂a, n̂b, e−
1
2 (κan̂a+κbn̂b)t}. These represent the identity, cavity

photon loss, cavity photon gain, cavity dephasing and the no-jump error channels respectively. The i-th error channel
Êi will act on an arbitrary state in the logical codespace, |ψ⟩ = V |01⟩ +W |10⟩, and take the system into the error
space as follows,

|Ei⟩ =
Êi |ψ⟩√

⟨ψ| Ê†
i Êi |ψ⟩

(10)

where Ei is the i-th error channel in the set E. From this, it becomes apparent that the error state for the photon
loss channel, in either Alice or Bob, is the ground state of the system : |E1⟩ = |E2⟩ = |00⟩. For the photon gain
channels, we have

|E3⟩ =
V√

1 + |W |2
|11⟩+

√
2W√

1 + |W |2
|20⟩ (11)

|E4⟩ =
√
2V√

1 + |V |2
|02⟩+ W√

1 + |V |2
|11⟩ (12)

Note that for both the photon gain channels the total excitation in the cavities is 2. Dephasing error channel of
the individual cavities will lead to dephasing within the dualrail codespace. Finally, there will be a backaction on the
codespace due to the no-jump evolution of the states which will look like

|E7⟩ =
V |01⟩+We−

1
2∆κt |10⟩√

|V |2 + |W |2e−∆κt
(13)

where ∆κ = κa − κb is the difference in loss rates between the two modes. This no-jump evolution causes the state
to be polarised to the longer lived mode, distorting the encoded information.

Erasure detection and trajectories

Hidden Markov decoding

To predict cavity photon loss and the most likely state of the system, we train a Categorical Hidden Markov
Model (HMM) with the experimentally obtained trajectories. The HMM assumes 2 hidden states, Codespace (C)
and Errorspace (E) and 2 measurement outcomes “g” and “e”. The transition matrix element tij determines the
probability of the system to make a transition from state i → j in the current time step. Similarly, the emission
matrix element emn is the probability of observing the measurement outcome m given that the system is in state
n at the current time step. In our experiment, we measure 104 trajectories for each of the 6 cardinal states in the
dual-rail Bloch sphere and train an HMM for each state to learn the probabilities. Each trajectory is 167 measurement
rounds long. Fig.S 3a shows a sample of these trajectories for the 6 cardinal states while Fig.S 3b shows the decoded
trajectories as predicted by the HMM. Fig.S 3c and Fig.S 3d depicts the transition and emission matrices obtained
after the training on the raw trajectories. Since each erasure detection round is 12µs long, we can convert these
probabilities in to rates.

We expect the erasure rates to be κa and κb for the |±Z⟩ states and 1
2 (κa + κb) for the states on the equator. The

HMM predicted values matches well with the rates extracted independently(from Table 1). The HMM also allows us
to extract false positive and false negative probabilities.
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(a)

(b)

(c)

(d)

FIG. S 3. a, Raw trajectories measured after preparing the 6 cardinal states in the dual-rail subspace. Here we only show
20 samples trajectories with 20 erasure detection rounds in each trajectory. Each pixel represents a detection round with “g”
as green, “e” as yellow and red represents states higher than “e”. b, Corresponding decoded trajectories as predicted by the
Hidden Markov Model (HMM). The model is trained for each states with 104 trajectories and more than 150 erasure detection
rounds per trajectory. Black squares represents the system is within the dual-rail codespace and white squares represents the
error space. c, Learned transition matrix for each of the 6 states. The off-diagonal elements represents the probability of the
system to transition between codespace(C) and errorsapce(E). d, Learned emission matrix corresponding to the measurement
outcomes “g” and “e”.

State Erasure prob. Erasure rate
|+Z⟩ 0.039 per gate 3.25(ms)−1

|−Z⟩ 0.054 per gate 4.5(ms)−1

Equator states 0.045 per gate 3.75(ms)−1

Supplementary Table II. Error probabilities calculated from the HMM model

False negative prob. = P (C → E)× P (g|E) = tCE × egE = 0.0028 per gate

False positive prob. = P (C → C)× P (e|C) = tCC × eeC = 0.006 per gate
(14)

The above values are averaged over all 6 cardinal states.

TOMOGRAPHY

Parity mapping to measure single-mode Wigner

The single mode Wigner for a bosonic mode is defined as

W (α) =
2

π
Tr

[
ρP̂A(α)

]
(15)

where P̂A(α) = D̂(−α)Π̂AD̂(α) is the displaced parity operator with Π̂A = (−1)â
†â being the parity operator for the

mode. Assuming we have a single bosonic mode dispersively coupled to a transmon as Ĥ = h̄χâ†â |e⟩⟨e|, we can map
the parity of the mode to the transmon state. To do so, after preparing the desired state, we initialise the transmon
in the +X state. We then let the dispersive interaction act for exactly t = π/χ time. We then obtain,
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FIG. S 4. a, Measured single-mode Wigner functions for Alice and Bob after initialising in Fock states |0⟩ and |1⟩. The first
plot shows the 4 points to be measured(black dots) in order to extract the expectation values of the Pauli operators within the
0− 1 Fock qubit. The bottom panel shows the expectation values of the Pauli operators using these 4 measurements for both
Alice and Bob initialised in the same states(with |+Z⟩ = |0⟩ , |−Z⟩ = |1⟩). We obtain the expected values up to SPAM errors.
b, Simulated 2D cuts of joint-Wigner function for the |+X⟩L state in the dual-rail subspace. In each of the plot, the other 2
values are set to 0. The black dots represents the 16 values in the joint phase space of Alice and Bob to be measured to extract
the 16 2-qubit Pauli operator expectation values.

U(t) |ψ⟩ ⊗ 1√
2
(|g⟩+ |e⟩) = 1√

2
(|ψ, g⟩+ e−iχtâ†â |ψ, e⟩) = 1√

2
(|ψ, g⟩+ e−iπâ†â |ψ, e⟩) = 1√

2
(|ψ, g⟩+ Π̂A |ψ, e⟩) (16)

Hence, by measuring the transmon in the X-basis, we measure the parity of the bosonic mode.

Logical Pauli measurements

To extract the expectation values of the logical Pauli operators of the dual-rail subspace, we sample specific points
in the joint-Wigner space of the cavities [7, 8]. To see this, we first define describe how to measure the expectation
values of the logical Pauli operators for the Fock qubit using single-mode Wigner. We will then extend this method
to measure the logical Pauli operators of the dual-rail qubit using Joint-Wigner.

Fock qubit

The logical codewords for the Fock qubit are |+ZL⟩ = |0⟩ and |−ZL⟩ = |1⟩. We then proceed to project the
displaced parity onto the fock qubit subspace using the identity projector Î = |0⟩⟨0|+ |1⟩⟨1|. We get

ÎP̂A(α)Î =

[
⟨0| P̂A |0⟩ ⟨0| P̂A |1⟩
⟨1| P̂A |0⟩ ⟨1| P̂A |1⟩

]
=

[
⟨α| Π̂A |α⟩ ⟨α| Π̂AD̂(α) |1⟩

⟨1| D̂(−α)Π̂A |α⟩ ⟨1| D̂(−α)Π̂AD̂(α) |1⟩

]
(17)

Using Laguerre polynomials and the identity (−1)â
†â |α⟩ = |−α⟩, we simplify the above equation to

ÎLP̂A(α)ÎL =

[
⟨α|−α⟩ ⟨−2α|1⟩
⟨1|−2α⟩ ⟨1| P̂ (α) |1⟩

]
= e−2|α|2

[
1 2α∗

2α 4|α|2 − 1

]
(18)

here we used ⟨−α|α⟩ = e−2|α|2 and ⟨1| P̂ (α) |1⟩ = e−2|α|2(4|α|2 − 1). We then equate the above equation to the 4
Pauli operators {Î , X̂, Ŷ , Ẑ} and solving for α, we get αi = {0, 1√

2
,− 1√

2
, i√

2
}. This tells us that if we restrict ourselves

to the Fock qubit subspace then we only need to measure these four points in phase space to reconstruct the full
density matrix. Fig.S 4a, shows the pictorially the four points in phase space and also provides intuition to why we
expect it. Now, using these displacements, we can invert the above equation to get the Pauli operators as
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FIG. S 5. a, Experimentally measured 2d joint-Wigner cuts of the relevant states for the dual-rail code(6 cardinal states and
the error state. The second row shows the 16 two-qubit Pauli expectation values extracted by measuring 16 points in phase
space. Last row depicts the extracted logical Pauli expectation values of the dual-rail subspace. All the measured data shown
includes SPAM errors.

Î =
e

2

[
P̂ (

1√
2
) + P̂ (− 1√

2
)
]

X̂ =
e

2
√
2

[
P̂ (

1√
2
)− P̂ (− 1√

2
)
]

Ŷ =
e

2
√
2

[
2P̂ (

i√
2
)− P̂ (

1√
2
)− P̂ (− 1√

2
)
]

Ẑ = P̂ (0)

(19)

Joint-parity mapping to measure joint Wigner

We can easily extend this technique for our dual-rail qubit. Crucially, we will have to measure the joint-Wigner,
defined as,

W (α, β) =
4

π2
Tr

[
ρP̂J(α, β)

]
(20)

where we define the displaced joint parity operator as P̂J(α, β) = P̂A(α) ⊗ P̂B(β). To measure the joint-parity,
we again turn to the dispersively coupled transmon. In our system, the dispersive coupling is of the form Ĥ =
h̄χaqâ

†â |e⟩⟨e| h̄χbq b̂
†b̂ |e⟩⟨e|. Therefore, using the same parity mapping sequence as before, we would obtain,

U(t) |ψ⟩ab ⊗
1√
2
(|g⟩+ |e⟩) = 1√

2
(|ψab, g⟩+ e−iχaqtâ

†â+χbqtb̂
†b̂ |ψab, e⟩) (21)

To obtain the joint-parity, we would need to choose t such that it is a multiple of both χaq and χbq, which in general is
difficult. However, if χaq = χbq = χ, we can set t = π/χ to again measure the joint-parity by measuring the transmon
in the X-basis. Hence the need for cross-Kerr matching.
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FIG. S 6. a, Measured expectation values of the dual-rail Pauli operators as a function of number of erasure detection rounds,
with solid lines shows the fits to exponential decay. b, Expectation values postselected on no jumps in the trajectory. ⟨Î(t)⟩
and ⟨Ẑ(t)⟩ are fit to exponential decay. Since these plots are extremely flat, we can only extract an upper bound on the residual

leakage and bit-flip rate. ⟨X̂(t)⟩ and ⟨Ŷ (t)⟩ are fit to the analytical no-jump evolution with an additional exponential decay
term to extract residual dephasing rate.

Dual-rail qubit

We first note that we cannot directly project on to the dual-rail subspace since, due to erasure errors, the system
leaks out of this subspace. In order to incorporate the error state |00⟩, we instead choose to restrict ourselves on to the
two qubit subspace spanned by Fock qubit in both Alice and Bob : {|0⟩ , |1⟩}A ⊗ {|0⟩ , |1⟩}B . The dual-rail subspace,
including the error space, lives within this larger space, even though we have some states we are not concerned with.
Now, projecting the displaced joint parity onto this subspace, we get,

(ÎA ⊗ ÎB)P̂J(α, β)(ÎA ⊗ ÎB) = (ÎAP̂A(α)ÎA)⊗ (ÎBP̂B(β)ÎB) (22)

which we then equate to the 16 two-qubit Paulis {Î , X̂, Ŷ , Ẑ}A ⊗ {Î , X̂, Ŷ , Ẑ}B . Its easy to see that this will yield
16 points, which are just combinations of the 4 points from single-mode displacements that we derived above. We
write this set of 16 displacements explicitly below,

d = (α, β) =
1√
2
×
{
(0, 0), (0, 1), (0,−1), (0, i), (1, 0), (1, 1), (1,−1), (1, i),

(−1, 0), (−1, 1), (−1,−1), (−1, i), (i, 0), (i, 1), (i,−1), (i, i),

} (23)

We will denote di as the i-th element in the above set, with i = 0, 1, 2, ..., 15. From these displacements, we can
construct the 16 two-qubit Pauli matrices as follows,
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ÎAÎB =
e2

4

[
P̂J(d5) + P̂J(d6) + P̂J(d9) + P̂J(d10)

]
ÎAX̂B =

e2

4
√
2

[
P̂J(d5)− P̂J(d6) + P̂J(d9)− P̂J(d10)

]
ÎAŶB =

e2

4
√
2

[
2P̂J(d7)− P̂J(d5)− P̂J(d6) + 2P̂J(d11)− P̂J(d9)− P̂J(d10)

]
ÎAẐB =

e

2

[
P̂J(d4) + P̂J(d8)

]
X̂AÎB =

e2

4
√
2

[
P̂J(d5) + P̂J(d6)− P̂J(d9)− P̂J(d10)

]
X̂AX̂B =

e2

8

[
P̂J(d5)− P̂J(d6)− P̂J(d9) + P̂J(d10)

]
X̂AŶB =

e2

8

[
2P̂J(d7)− P̂J(d5)− P̂J(d6)− 2P̂J(d11) + P̂J(d9) + P̂J(d10)

]
X̂AẐB =

e

2
√
2

[
P̂J(d4)− P̂J(d8)

]
ŶAÎB =

e2

4
√
2

[
2P̂J(d13) + 2P̂J(d14)− P̂J(d5)− P̂J(d6)− P̂J(d9)− P̂J(d10)

]
ŶAX̂B =

e2

8

[
2P̂J(d13)− 2P̂J(d14)− P̂J(d5) + P̂J(d6)− P̂J(d9) + P̂J(d10)

]
ŶAŶB =

e2

8

[
4P̂J(d15)− 2P̂J(d13)− 2P̂J(d14)− 2P̂J(d7) + P̂J(d5) + P̂J(d6)− 2P̂J(d11) + P̂J(d9) + P̂J(d10)

]
ŶAẐB =

e2

2
√
2

[
P̂J(d12)− P̂J(d4)− P̂J(d8)

]
ẐAÎB =

e

2

[
P̂J(d1) + P̂J(d2)

]
ẐAX̂B =

e

2
√
2

[
P̂J(d1)− P̂J(d2)

]
ẐAŶB =

e

2
√
2

[
2P̂J(d3)− P̂J(d1)− P̂J(d2)

]
ẐAẐB = P̂J(d0)

(24)

For our purposes, we only care about the Pauli operators for the dual-rail, which can be obtained by linear
combinations of the above matrices, since we work in the {|01⟩ , |10⟩} basis. Therefore, the logical Pauli operators for
the dual-rail qubit are

ÎL =
1

2

[
ÎAÎB − ẐAẐB

]
X̂L =

1

2

[
X̂AX̂B + ŶAŶB

]
ŶL =

1

2

[
ŶAX̂B − X̂AŶB

]
ẐL =

1

2

[
ẐAÎB − ÎAẐB

]
(25)

Fig.S 4b shows the 16 points measured in phase space, depicted in different joint-Wigner cuts. Fig.S 4 shows
the measurement of joint-Wigner cuts, the expectation values of the two-qubit Pauli operators and subsequently
constructing the dual-rail Pauli expectation values from them.
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Dual-rail Pauli transfer matrix with erasure detection

We measure the expectation values of the Pauli operators after preparing the 6 cardinal states as a function of
number of erasure detection rounds. Top panel in Fig.S 6 shows the measured values with exponential fits. The decay
of the identity operator clearly shows leakage outside of the codespace. The bottom panel shows postselected data.
The postselected ⟨Î⟩ looks constant and we can only obtain an upper bound on residual leakage rate by fitting to
an exponential decay (< 10−4(ms)−1). We then fit the postselected ⟨X̂⟩ and ⟨Ŷ ⟩ to extract dephasing rates within
the dualrail subspace. Taking into account the no-jump evolution, the analytical formula for the evolution of these
operators will look like [9]

⟨X̂(t)⟩ = (W ∗V + V ∗W )e−
1
2∆κt

|V |2 + |W |2e−∆κt
(26)

⟨Ŷ (t)⟩ = i(W ∗V − V ∗W )e−
1
2∆κt

|V |2 + |W |2e−∆κt
(27)

⟨Ẑ(t)⟩ = (|V |2 − |W |2)e− 1
2∆κt

|V |2 + |W |2e−∆κt
(28)

for an arbitrary state |ψ⟩ = V |01⟩ +W |10⟩. On top of this, we add an exponentially decaying term to calculate
residual dephasing and bit-flip rate within the codespace. We observe that the fits agree well with the measured data.
We note that the increase in ⟨Ẑ⟩ for the equator states shows the polarisation of the Bloch vector towards the longer
lived cavity (Bob) due to the no-jump backaction.
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