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Unraveling the topology of dissipative quantum systems
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We discuss topology in dissipative quantum systems from the perspective of quantum trajectories. The latter
emerge in the unraveling of Markovian quantum master equations and/or in continuous quantum measurements.
Ensemble-averaging quantum trajectories at the occurrence of quantum jumps, i.e., the jump times, gives rise to
a discrete, deterministic evolution which is highly sensitive to the presence of dark states [Gneiting et al., Phys.
Rev. A 104, 062212 (2021)]. We show for a broad family of translation-invariant collapse models that the set of
dark-state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians, which
is also reflected by the corresponding jump-time dynamics. The topological character of the latter can then be
observed, for instance, in the transport behavior, exposing an infinite hierarchy of topological phase transitions.
We develop our theory for one- and two-dimensional two-band Hamiltonians and show that the topological
behavior is directly manifest for chiral, PT , or time-reversal-symmetric Hamiltonians.
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I. INTRODUCTION

An elegant and powerful theory of topological phases is
applicable to closed quantum systems [1–4]. Conditioned on
the presence of a spectral gap and generic symmetries, Hermi-
tian Hamiltonians are classified into topological equivalence
classes, labeled by topological indices that are invariant under
perturbative deformations of the Hamiltonian. Bulk-boundary
correspondence theorems then relate these topological invari-
ants of the bulk to the existence of robust, gapless edge states.
In topological insulators of closed systems, observing these
edge states can serve to detect the underlying bulk topology.

Formulating such a theory for open, dissipative quan-
tum systems requires new strategies, regarding both how
to identify the topology and how to detect it. Some lossy
classical and/or quantum systems can be characterized by
non-Hermitian Hamiltonians, which allow for a spectral anal-
ysis similar to that for closed systems. While this has led to
interesting insights (e.g., Refs. [5–16]), non-Hermitian Hamil-
tonians capture the dynamics of dissipative quantum systems,
which are usually described by (Markovian) Lindblad master
equations, only in the short-time or in the Zeno limit, i.e.,
before the occurrence of quantum jumps.
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Open quantum systems are not characterized by their
Hamiltonian alone, but in addition involve Lindblad opera-
tors, which describe the effect of the environment and/or a
continuous measurement. The spectral analysis of Hamilto-
nians can, for instance, be replaced by a spectral analysis of
the (in general mixed) steady states, which again constitute
Hermitian operators. In the case of quadratic or Gaussian
master equations with a vanishing Hamiltonian, this has led
to a successful classification of topological states, with the
bulk-boundary correspondence replaced by the existence of
nonlocal decoherence-free subspaces [17,18]. Alternatively,
the full “Liouvillian” (comprising Hamiltonian and Lindblad
operators) can be subjected to a spectral analysis, which,
again for quadratic master equations, established a topological
classification associated with gapless edge states with finite
lifetime [19] (see also, e.g., Refs. [20–23]).

Here, we propose a substantially different approach,
based on quantum trajectories. Every Lindblad master equa-
tion can be unraveled into stochastically evolving quantum
trajectories, such that their ensemble average recovers the
(time-dependent) solution of the master equation. We focus
here on quantum jump unravelings, where the stochas-
tic jump events occur at discrete times. Besides their
formal relation to quantum master equations, quantum tra-
jectories can also be realized in continuous monitoring
schemes, endowing the trajectories with independent physical
relevance.

Instead of ensemble-averaging quantum trajectories at
given wall times, which would lead us back to our starting
point, the Lindblad equation, we here focus on their averaging
at given jump counts, i.e., jump times. This was recently
established [24] as an alternative operationally implementable
way to address the collective behavior of quantum trajectories.

2643-1564/2022/4(2)/023036(14) 023036-1 Published by the American Physical Society

https://orcid.org/0000-0001-9686-9277
https://orcid.org/0000-0003-4320-9755
https://orcid.org/0000-0003-3682-7432
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023036&domain=pdf&date_stamp=2022-04-12
https://doi.org/10.1103/PhysRevA.104.062212
https://doi.org/10.1103/PhysRevResearch.4.023036
https://creativecommons.org/licenses/by/4.0/


CLEMENS GNEITING et al. PHYSICAL REVIEW RESEARCH 4, 023036 (2022)

The resulting jump-time evolution equation will serve as the
basis of our analysis.

This shift of perspective offers yet another, different angle
on topology in dissipative quantum systems: The jump-time
evolution, which relies on the persistence of quantum jumps,
is highly sensitive to the presence of dark states, where
quantum jumps cease to occur. As we show, for a broad
family of translation-invariant collapse models, this restates
a topological classification within the space of Hamiltonians,
now, however, with the spectral-gap condition of closed sys-
tems replaced by the requirement to avoid dark-state-inducing
Hamiltonians. In the one- and two-dimensional two-band
models considered here, this introduces winding numbers as
topological invariants that substantially impact the jump-time
evolution. In particular, under generic symmetry constraints
on the Hamiltonian, these topological indices directly control,
and thus are directly detectable (e.g., by continuous moni-
toring), in the transport behavior described by the jump-time
evolution.

In this paper, we elaborate this theory for one- and two-
dimensional two-band models, extended by collapse operators
with different topological properties. On the one hand, this
will lead us to introduce a characteristic phase, in anal-
ogy to the Berry phase of closed quantum systems. On the
other hand, it will clarify how the topology of full-fledged
dissipative quantum systems requires a description beyond
(non-Hermitian) effective Hamiltonians.

II. JUMP-TIME UNRAVELING

It is instructive to introduce quantum trajectories through
continuous quantum measurements, where they are physi-
cally realized and quantum jumps are detected. We restrict
ourselves here to pure initial states and pure-state quantum
trajectories. A continuously monitored quantum system is
governed by a stochastic Schrödinger equation [25–28],

d|ψt 〉 = − i

h̄

⎛
⎝Ĥeff + ih̄

γ

2

∑
j∈I

〈ψt |L̂†
j L̂ j |ψt 〉

⎞
⎠|ψt 〉dt

+
∑
j∈I

(
L̂ j |ψt 〉

〈ψt |L̂†
j L̂ j |ψt 〉

− |ψt 〉
)

dNj (t ), (1)

where the Lindblad or jump operators L̂ j characterize the
continuous measurement. The discrete random variables
dNj (t ) ∈ {0, 1} describe the stochastic occurrence of the
quantum jumps (recorded as “clicks” in the detector). They
follow the statistics E|ψt 〉[dNj (t )] = γ 〈ψt |L̂†

j L̂ j |ψt 〉dt and
dNj (t )dNk (t ) = δ jkdNj (t ), where E|ψt 〉 denotes the ensem-
ble average over all trajectories that are in state |ψt 〉 at the
time t . The effective Hamiltonian Ĥeff = Ĥ − ih̄ γ

2

∑
j∈I L̂†

j L̂ j

captures the non-Hermitian evolution between the quantum
jumps, while the added nonlinear term ensures that the state
remains normalized. Note that, without loss of generality, we
exclude diffusive measurement schemes, which can always
be understood as emerging from pointlike jump events that
cannot be resolved. Moreover, we emphasize that an arbitrary
collection of Lindblad operators can always be associated
with a continuous measurement.

Individual quantum trajectories |ψt 〉 are specified by a
random sequence of jump events jn at times tn, |ψt 〉 =
|ψt ({( jn, tn)})〉. Such jump records have been successfully
observed in various experimental platforms [29–44]. If quan-
tum trajectories are averaged or read out at wall times t , the
ensemble-averaged state ρt = E[|ψt 〉〈ψt |] follows a Gorini-
Kossakowski-Sudarshan-Lindblad master equation [45,46],

∂tρt = − i

h̄
[Ĥ, ρt ] + γ

∑
j∈I

(
L̂ jρt L̂

†
j − 1

2
{L̂†

j L̂ j, ρt }
)

, (2)

where {Â, B̂} = ÂB̂ + B̂Â. Averaging here effectively results
in discarding the jump records, while the quantum trajec-
tories are said to unravel the quantum master equation (2).
Note that ensemble averages over classical noise or disorder
realizations [47,48], which also reproduce quantum master
equations but are not related to continuous quantum measure-
ments, are not considered here.

Alternatively, quantum trajectories can be ensemble aver-
aged or read out at given jump counts n, i.e., at the respective
(from trajectory to trajectory varying) jump times tn. The
resulting ensemble-averaged state ρn = E[|ψtn〉〈ψtn |] is then
governed by the discrete, deterministic jump-time evolution
equation [24],

ρn+1 =
∫ ∞

0
γ dτ

∑
j∈I

L̂ je
− i

h̄ Ĥeff τ ρne
i
h̄ Ĥ†

eff τ L̂†
j , (3)

which encodes the evolution of the state from one quantum
jump to the next. These jump-time dynamics, which we also
refer to as jump-time unraveling, lay the groundwork for our
analysis. We emphasize that the evolution (3) is exact and
operationally accessible. A detailed derivation and discussion
of (3) are given in Ref. [24].

Bound to the occurrence of quantum jumps, the jump-
time evolution (3) describes a trace-preserving quantum map
only if the dynamics do not allow for dark states [24]. Dark
states |ψD〉 are pure states that satisfy L̂ j |ψD〉 = 0 ∀ j and
[Ĥ , |ψD〉〈ψD|] = 0. Once the system is in a dark state, the
quantum jumps cease to occur. As we show below, this sen-
sitivity to the presence of dark states may imprint topological
properties on the jump-time dynamics, even if the latter re-
main dark state free.

To illustrate the jump-time evolution, let us examine an
instructive example. Consider a single particle propagating
on a nearest-neighbor hopping chain with hopping constant
J and lattice constant a, Ĥ = J

∑
j∈Z(| j + 1〉〈 j| + H.c.) =

2J cos p̂a
h̄ , extended by a dissipative directional hopping L̂ =∑

j∈Z | j + 1〉〈 j| = e−i p̂a/h̄, where p̂ = ∫ h/2a
−h/2a d p p |p〉〈p| and

〈 j|p〉 = ei jap/h̄/
√

2π h̄. This (translation-invariant) dissipator,
which translates each state by one unit cell, excludes the exis-
tence of dark states, independently from the Hamiltonian (as
L̂|ψ〉 �= 0 ∀|ψ〉). The resulting master equation (2) is easily
solved in the momentum representation. For a localized initial
state, ρ0 = | j0〉〈 j0|, we derive that the expectation value of
the displacement operator x̂ = ∑

j∈Z a j| j〉〈 j| is 〈x̂〉t = a j0 +
aγ t , describing a positive current. The corresponding jump-
time evolution (3) can also be solved analytically, yielding the
respective average displacement 〈x̂〉n = a j0 + an. Note that
the jump-time transport is independent from the dissipation
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FIG. 1. Dark-state-induced topology in one-dimensional two-
band models. (a) Dissipative extension of the Su-Schrieffer-Heeger
(SSH) model (beige dashed box comprising a unit cell): A collapse
process from the B sublattice to the A sublattice (red arrows) turns
states on the A sublattice into dark states whenever intracell hop-
ping v and intercell hopping w vanish, v = w = 0. (b) The general
set of dark-state-inducing Hamiltonians Hd (red dashed line) for
this collapse process coincides with the z axis of the Bloch space.
Bloch-space Hamiltonians 	h(p) can then be topologically classified
according to their winding number W [	h(p)|	ez] about Hd.

rate γ , which is absorbed by the waiting time between the
quantum jumps. The same transport behavior is obtained if
the nearest-neighbor hopping is replaced by a general H ( p̂). In
this example, the current is purely dissipation induced, while
the coherent hopping merely disperses the wave packet.

III. DARK-STATE-INDUCED TOPOLOGY

A generic situation where translation-invariant collapse
models can give rise to dark states is that of single-particle
two-band models, i.e., lattices with two sites per unit cell.
We first discuss one-dimensional lattices; below, we then
generalize our theory to two dimensions. We thus focus
now on translation-invariant Hamiltonians Ĥ = ∮

d p |p〉〈p| ⊗
Ĥ (p) (from here on, we abbreviate the Brillouin zone integral∫ h/2a
−h/2a d p ≡ ∮

d p), with the Bloch Hamiltonian

Ĥ (p) = hx(p)σx + hy(p)σy + hz(p)σz. (4)

The Pauli matrices σi, i ∈ {x, y, z}, are expressed with respect
to the intracell basis {|A〉, |B〉}, using the convention σz =
|A〉〈A| − |B〉〈B|. We remark that an additional contribution
h0(p)12 would have no effect on the jump-time evolution, as
is easily seen by inspecting (3).

The Hamiltonian (4) includes the paradigmatic Su-
Schrieffer-Heeger (SSH) model [49] as a special case, which
we sometimes use for illustration in the remainder: hx(p) =
v + w cos pa

h̄ , hy(p) = −w sin pa
h̄ , and hz(p) ≡ 0, where v >

0 (w > 0) denotes the intracell (intercell) hopping and a de-
notes the lattice constant (cf. Fig. 1).

As a paradigmatic dissipative extension entailing dark
states, we consider collective collapse, described by a single
jump operator

L̂cc = 1∞ ⊗ |A〉〈B|, (5)

where 1∞ denotes the identity in the infinite-dimensional ex-
ternal lattice space. In the intracell space, the jump operator
induces a (momentum-independent) incoherent hopping from
the B to the A site. While such simultaneous collapse over the

extent of the entire lattice may appear artificial, it serves well
for our demonstrational purposes. Below, we also discuss the
case of localized collapse operators. Alternatively, replacing
the identity 1∞ by e−i p̂a/h̄, as in the example above, results
in an overall drift on top. We stress that the resulting (wall-
time) master equations in all these cases are not quadratic or
Gaussian.

Clearly, the collective collapse operator L̂cc admits the
possibility of dark states, as it annihilates any state that
lives exclusively on the A sublattice, L̂cc

∮
d pψ (p)|p〉 ⊗

|A〉 = 0 for general ψ (p). Whether dark states exist or not
is then ultimately decided by the Hamiltonian. Specifically,
[Ĥ (p0), |A〉〈A|] = 0 if and only if Ĥ (p0) = hz(p0)σz; that
is, dark states are present whenever there exist momenta p0

where Ĥ (p0) = hz(p0)σz. This implies that, for the dissipator
L̂cc, the set of dark-state-inducing (or dark for short) Hamil-
tonians Hd is determined by Hd = {Ĥ |Ĥ = hzσz, hz ∈ R},
which exactly comprises the z axis of the Bloch space of all
Hamiltonians (4); cf. Fig. 1. We thus find that, if we exclude
Hd from the set of admissible Bloch Hamiltonians, the result-
ing space Hcc is not simply connected.

Due to the topology of the Brillouin zone, the Hamil-
tonian (4) describes a closed loop in the three-dimensional
Bloch space. The topological structure of Hcc then classi-
fies the Hamiltonians (4) into separate equivalence classes,
indexed by their winding number

W [	h(p)|	ez]

:=
∮

d p

2π

1

h2
⊥(p)

(
∂hx(p)

∂ p
hy(p) − hx(p)

∂hy(p)

∂ p

)
, (6)

which counts the number of times the loop winds around
the Bloch space’s z axis, the latter representing the one-
dimensional manifold of dark Hamiltonians Hd. In Eq. (6),
h2

⊥(p) := h2
x (p) + h2

y (p) indicates the separation from the
dark Hamiltonians (i.e., the z axis). As we show below,
this integer-valued topological index of the Bloch Hamilto-
nian can have a strong impact on the jump-time dynamics.
We remark that a similar dark-state-based characterization
of topology has been formulated in Ref. [50], there in the
context of non-Hermitian or lossy quantum systems. More-
over, we note that the situation becomes more complex in the
case of momentum-dependent intracell collapse, where the set
of dark-state-inducing Hamiltonians may in general become
momentum dependent.

In the case of the SSH model, the Hamiltonian traces a
circle in the x-y plane of the Bloch space, and the winding
number can take the two values W [	h(p)|	ez] ∈ {0, 1}, with the
topological transition at v = w; cf. Fig. 1.

IV. TOPOLOGY IN JUMP-TIME EVOLUTION

We now demonstrate how the dark-state-induced topologi-
cal index of the Hamiltonian controls the jump-time dynamics
under collective collapse (5), even under the condition that
dark Hamiltonians are avoided. Clearly, the latter is nec-
essary in order to obtain a persistent jump-time evolution:
For instance, in the extreme case of only dark Hamiltonians,
Ĥ (p) = hz(p)σz ∀p, the jump-time evolution quickly termi-
nates completely, ρn = 0 for n > 1. Let us consider the case
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h⊥(p) �= 0 ∀p, i.e., dark Hamiltonians are avoided entirely.
For clarity, we first fix hz(p) ≡ 0. If we evaluate (3) in the
momentum basis, we obtain

〈p|ρ (A)
n+1|p′〉 = Kcc(p, p′)〈p|ρ (A)

n |p′〉, (7)

where the jump-time propagator reads

Kcc(p, p′) = 2h̄2γ 2[hx(p) + ihy(p)][hx(p′) − ihy(p′)]
2[h2

⊥(p) − h2
⊥(p′)]2 + h̄2γ 2[h2

⊥(p) + h2
⊥(p′)]

.

(8)

Note that we restrict, without loss of generality, the quantum
state to the A sublattice, 〈p|ρ (A)

n |p′〉 := 〈p, A|ρn|p′, A〉. This is
possible because the collapse operator L̂cc projects the state
back onto the A sublattice, constraining the jump-time state
ρn to the A sublattice from the first jump on. For the initial
state ρ0, we assume that it resides on the A sublattice. The
explicit solution of the jump-time evolution reads

〈p|ρ (A)
n |p′〉 = Kcc(p, p′)n〈p|ρ (A)

0 |p′〉. (9)

Since Kcc(p, p) = 1, the momentum distribution is indepen-
dent of the jump count n: 〈p|ρ (A)

n |p〉 = 〈p|ρ (A)
0 |p〉 if h⊥(p) �=

0 ∀p.
In order to see how the topological equivalence class of the

Hamiltonian underlies the propagator (8), we define the phase

Tcc[	h(p)] := i

2π

∮
d p

[
∂

∂ p
Kcc(p, p′)

]
p′=p

. (10)

The latter can be interpreted as a closed-loop integral over
the connection Jcc(p) = i[ ∂

∂ pKcc(p, p′)]p′=p, in analogy to the
Berry phase and the Berry connection in closed quantum
systems. Evaluating Tcc[	h(p)] for (8), we obtain

Tcc[	h(p)] = W [	h(p)|	ez], (11)

i.e., Tcc[	h(p)] coincides with the winding number about the
dark Hamiltonians Hd; cf. Eq. (6). We thus take the jump-time
phase (10) as an indicator for the impact of the dark-state-
induced topology on the jump-time evolution. Below, we
show that Tcc[	h(p)], for instance, directly controls the trans-
port behavior.

For the more general case hz(p) �= 0, the jump-time
propagator is derived in Appendix A. A finite hz induces
nontopological contributions R1,2 to the jump-time phase:

Tcc[	h(p)] = W [	h(p)|	ez] + R1[	h(p)] + R2[	h(p)], (12)

with

R1[	h(p)] = − 2

h̄γ

∮
d p

2π

∂hz(p)

∂ p
ln

[
h2

⊥(p)

h̄2γ 2

]
, (13a)

R2[	h(p)] =
∮

d p

2π

∂hz(p)

∂ p

16h2
z (p) + h̄2γ 2

4h̄γ h2
⊥(p)

. (13b)

Imposing symmetry constraints on the system Hamiltonian
may, however, cause these residual terms to vanish. This holds
for chiral (sublattice) symmetry or PT symmetry [4], which
enforce hz(p) ≡ 0, the case discussed above. Similarly, time-
reversal symmetry T implies

hz(−p) = hz(p) and h⊥(−p) = h⊥(p), (14)

which again results in vanishing nontopological terms (13a)
and (13b); for details, see Appendix B. We thus find that
the topological character of the jump-time evolution under
collective collapse (5) is manifest for large, generic symme-
try classes of Hamiltonians. In the general case, a transition
between different topological equivalence classes is accompa-
nied by a discontinuous jump of Tcc[	h(p)], quantified by the
change in the winding number.

Note that whether and how the dark-state-induced topology
carries over to the jump-time dynamics are not decided by the
winding about the set of dark Hamiltonians Hd exclusively.
For instance, if we replace L̂cc by L̂′

cc = 1∞ ⊗ |B〉〈A|, Hd

is the same, but T ′
cc[	h(p)] = −W [	h(p)|	ez]+ (nontopological

terms), with the propagation restricted to the B sublattice.
Alternatively, we can replace L̂cc by a sublattice projection,
either

L̂A = 1∞ ⊗ |A〉〈A| or L̂B = 1∞ ⊗ |B〉〈B|. (15)

Both dissipators share with L̂cc the same set of dark Hamil-
tonians. However, their respective jump-time phases [which
are defined analogously to (10), with Kcc(p, p′) replaced by
KA(p, p′) and KB(p, p′), respectively; KA(p, p′) and KB(p, p′)
can be found in Appendix C] vanish,

TA[	h(p)] = TB[	h(p)] = 0 (16)

for any 	h(p). This is because, even at the dark Hamil-
tonians, the jump-time evolution persists within the
projected (i.e., nondark) sublattices; e.g., for L̂A, we have
〈p|ρ (A)

n+1|p′〉 = h̄γ [h̄γ + i(hz(p) − hz(p′))]−1〈p|ρ (A)
n |p′〉 if

Ĥ (p) = hz(p)σz ∀p. The jump-time propagator for L̂A with
h⊥(p) �= 0 ∀p is given in Appendix C. The capacity of
the dissipator to shuffle states from the nondark sector of
the Hilbert space to the (under dark Hamiltonians) dark
sector (from the B to the A sublattice in the case of L̂cc)
is thus yet another essential prerequisite. This implies that
the non-Hermitian Hamiltonian alone cannot explain the
emergence of nontrivial topological jump-time behavior, as
L̂cc and L̂B give rise to the same

Ĥeff = Ĥ − ih̄
γ

4
1∞ ⊗ (12 − σz ). (17)

Only the jump-time propagator and jump-time phase contain
the complete information to assess the impact of the dark-
state-induced topology.

V. TOPOLOGICAL TRANSPORT

A remarkable and useful property of the jump-time
phase (10) is that it is directly observable in the transport
behavior. To see this, we evaluate the average displacement
〈x̂〉n for collective collapse (5), with x̂ = ∑

j∈Z a j| j〉〈 j| ⊗ 12.
We can write

〈x̂〉n = ih̄
∮

d p
∮

d p′δ(p − p′)
∂

∂ p
〈p|ρ (A)

n |p′〉. (18)

023036-4



UNRAVELING THE TOPOLOGY OF DISSIPATIVE … PHYSICAL REVIEW RESEARCH 4, 023036 (2022)

Assuming a localized initial state, ρ0 = | j0〉〈 j0| ⊗ |A〉〈A| and
hence 〈p|ρ (A)

0 |p〉 = a/h, one derives from (9)

〈x̂〉n = 〈x̂〉0 + i
a

2π
n

∮
d p

∮
d p′δ(p − p′)

∂

∂ p
Kcc(p, p′),

(19)

where we used that Kcc(p, p)n−1 = 1. It follows immediately
that

〈x̂〉n = a j0 + anTcc[	h(p)], (20)

i.e., the average displacement in jump time is, under generic
symmetry constraints, controlled by the winding about the
dark Hamiltonians [cf. (11)], changing linearly with the jump
count n in the topologically nontrivial sectors. In the absence
of symmetries, the jump-time phase is given by (12).

Note that, while the transport behavior (20) may be remi-
niscent of topological pumping [4,51], no periodic modulation
of the Hamiltonian is involved here. Rather, one may argue
that the role of the latter is here taken by the (stochastically)
concatenating quantum jumps.

We emphasize that (20) is valid at any stage of the jump-
time evolution, from the localized initial state to the fully
dispersed asymptotic state. More generally, it holds when-
ever the momentum distribution is homogeneous. Since the
momentum distribution is a constant of motion under L̂cc,
this makes conceivable the rapid switching between differ-
ent topological transport behaviors. In contrast, the steady
state of the respective wall-time master equation (2) does
not reproduce the topological transport behavior, as shown in
Appendix D.

In the case of the SSH model, we obtain 〈x̂〉n = a j0 +
anθ (w − v), with the theta function θ (x < 0) = 0, θ (x >

0) = 1, and θ (x = 0) = 1
2 . In Fig. 2, we confirm this for

the first four jump counts, obtained through numerically ex-
act ensemble averaging over N = 700 quantum trajectories.
We also depict jump-time-evolved states for the trivial and
the topological phase, respectively, which highlights that the
underlying topological pattern is not manifest in the spatial
distributions.

A similar winding-number-controlled average displace-
ment for a non-Hermitian or lossy extension of the SSH model
was derived in seminal earlier work [5]. In our language,
this work describes the evolution up to the first jump event,
restricting the average displacement to a single step (one unit
cell for the SSH model). In contrast, the topological trans-
port (20) supersedes the topological phase transition found in
Ref. [5], generalizing it to any jump count n. In monitoring
implementations, this gives rise to an infinite hierarchy of
topological phase transitions of arbitrary jump order n, where
different phase transitions are operationally distinguished by
the jump counts from preparation of the initial state to the
concluding state readout. Note that, with increasing depth n,
this topological pattern is increasingly hidden in the statistics
of the chains of quantum jumps.

We stress again that whether a persistent jump-time cur-
rent arises or not is not decided by the effective Hamiltonian
alone. For instance, as elaborated in the previous section, the
lattice projector L̂B gives rise to the same effective Hamilto-
nian (17) as the collective collapse (5), while its jump-time

FIG. 2. Topological transport and wave packet evolution in
jump-time unraveling for the dissipative SSH model. Both the
(a) collective collapse (cc) (5) and (b) local collapse (lc) (30) give
rise to the same topological transition: In the topologically nontrivial
(w > v) phase, the average displacement 〈x̂〉n grows linearly with the
jump count n, while 〈x̂〉n ≡ 0 in the trivial (v > w) phase (dashed
lines show analytical predictions (20) [or, equivalently, (34)], and
colored dots represent numerically exact averages over N = 700
quantum trajectories, for the initial state ρ0 = | j0〉〈 j0| ⊗ |A〉〈A| with
j0 = 0). At the same time, the underlying spatial distributions of the
jump-time-averaged states are strongly dependent on the collapse
model: Already at n = 3, the spatially asymmetric wave packets
for collective collapse (c) differ significantly from the virtually
symmetric wave packets for local collapse (d). The histograms are
plotted for w = 0.2h̄γ and v = 0.5h̄γ (red bars), and w = 0.5h̄γ and
v = 0.2h̄γ (blue bars). Empty bars correspond to the initial states at
n = 0.

phase vanishes [cf. (16)], and thus no persistent jump-time
transport emerges (in this case the state is constrained to
the B sublattice). Note that this demonstrates the divergence
between our topological classification and the one presented
in Ref. [5], where topological behavior is predicted both for
L̂cc and for L̂B, based on the requirement that the initial state
is, independently of the jump operator, prepared on the A
sublattice.

It is worth mentioning that we can interpolate between
these two cases if we consider a dissipative system that fea-
tures the two jump operators

L̂1 =
√

γcc

γ
L̂cc and L̂2 =

√
γB

γ
L̂B, (21)

where γ = γcc + γB. The effective Hamiltonian is again (17).
The jump-time evolution now assumes the invariant intracell
state

ρiis = γcc

γ
|A〉〈A| + γB

γ
|B〉〈B| (22)

after the first jump (or maintains it, if the intracell state of
the initial state assumes this form), so that we can write ρn =
ρ (iis)

n ⊗ ρiis. We then obtain

〈p|ρ (iis)
n+1|p′〉 = Kcc+B(p, p′)〈p|ρ (iis)

n |p′〉, (23)
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with the scalar propagator

Kcc+B(p, p′) = γcc

γ
Kcc(p, p′) + γB

γ
KB(p, p′). (24)

The jump-time phase with respect to (24) is given by

Tcc+B[	h(p)] = γcc

γ
Tcc[	h(p)] + γB

γ
TB[	h(p)], (25)

where TB[	h(p)] = 0; cf. (16). For a localized initial state, ρ0 =
| j0〉〈 j0| ⊗ ρiis, the average displacement then evaluates as

〈x̂〉n = a j0 + anTcc+B[	h(p)]; (26)

that is, the ratio γcc/γ determines the size of the displacement
steps.

To see that the presence of L̂cc does not necessarily imply
topological behavior, let us consider L̂cc combined with L̂A,
i.e., L̂1 = L̂cc and L̂2 = L̂A. The effective Hamiltonian then
reads Ĥeff = Ĥ − ih̄ γ

2 1∞ ⊗ 12, and the set of dark Hamilto-
nians is empty, i.e., there is no dark-state-induced topology;
correspondingly, if we evaluate the jump-time phase with re-
spect to the propagator 〈p|ρ (A)

n+1|p′〉 = Kcc+A(p, p′)〈p|ρ (A)
n |p′〉,

we obtain

Tcc+A[	h(p)] = 1

2

∮
d p

2π

∂hx (p)
∂ p hy(p) − hx(p) ∂hy (p)

∂ p

h2
⊥(p) + h̄2γ 2/4

, (27)

where we assumed hz(p) ≡ 0 for simplicity. The jump-time
phase (27) does not contain a topological contribution and is,
in general, nonvanishing.

VI. LOCALIZED COLLAPSE

The collective collapse (5) can be generalized to a broader
class of translation-invariant collapse models. To this end, we
introduce a collection of jump operators describing momen-
tum kicks,

L̂q = eiqx̂/h̄ ⊗ |A〉〈B|, (28)

weighted by a momentum transfer distribution G(q) with∮
dq G(q) = 1 and G(−q) = G(q) (x̂ = ∑

j∈Z a j| j〉〈 j|). The
corresponding jump-time evolution (3) reads

ρn+1 =
∫ ∞

0
γ dτ

∮
dq G(q)L̂qe− i

h̄ Ĥeff τ ρne
i
h̄ Ĥ†

eff τ L̂†
q, (29)

with both the effective Hamiltonian Ĥeff [cf. (17)] and the set
of dark Hamiltonians Hd the same as for the above-discussed
collective collapse.

One easily verifies that the collective collapse (5) is com-
prised as a limiting case, corresponding to G(q) = δ(q). The
opposite limit of local collapse, where each unit cell is en-
dowed with an individual Lindblad operator

L̂ j = | j〉〈 j| ⊗ |A〉〈B|, j ∈ Z, (30)

corresponds to G(q) = a/h. Other choices of G(q) character-
ize localized collapse processes with spatially extended range.
For instance, we can associate G(q) ∝ exp[−σ 2q2/2h̄2] with
coarse-grained local collapse operators of spatial width
σ > a.

The jump-time evolution for the family of collapse opera-
tors L̂q, together with the Hamiltonian (4) and h⊥(p) �= 0 ∀p,

becomes

〈p|ρ (A)
n+1|p′〉 =

∮
dq G(q) Kq(p, p′)〈p − q|ρ (A)

n |p′ − q〉,
(31)

where Kq(p, p′) = Kcc(p − q, p′ − q) with the collective
collapse propagator Kcc(p, p′) as in (8) [hz(p) ≡ 0]
or (A1a)–(A1c) [general hz(p)], respectively. The
corresponding momentum distribution 〈p|ρ (A)

n+1|p〉 =∮
dq G(q)〈p − q|ρ (A)

n |p − q〉 broadens after each jump, unless
G(q) ∝ δ(q) (collective collapse). This broadening eventually
produces the homogeneous momentum distribution required
to observe topological transport, independently from the
initial state. This generally happens before the steady state
is reached. For instance, for local collapse, G(q) = a/h, a
single jump-time step induces such homogeneous momentum
distribution.

To accommodate the more general class of translation-
invariant collapse models (29), we now define the jump-time
phase as

Tti[	h(p)] := i

2π

∮
d p

∮
dq G(q)

[
∂

∂ p
Kq(p, p′)

]
p′=p

. (32)

Note that the jump-time phase (32) reduces to (10) for G(q) =
δ(q). Irrespective of G(q), we find

Tti[	h(p)] = Tcc[	h(p)], (33)

i.e., the jump-time phase is invariant under the translation-
invariant generalization of the collapse model. It is clear that
this immutability also holds for similar translation-invariant
generalizations of, e.g., L̂′

cc or the sublattice projections L̂A

and L̂B, respectively.
Given 〈p|ρ (A)

n |p〉 = a/h, we derive from (31) the average
displacement

〈x̂〉n+1 = 〈x̂〉n + aTti[	h(p)]; (34)

that is, with (33), we find that the transport under gen-
eral localized collapse remains controlled by the jump-time
phase (10), i.e., by the winding about the dark Hamiltonians.
(Analogously, the jump-time phase remains vanishing for lo-
calized versions of the sublattice projections.) In Fig. 2 we
numerically confirm this for the SSH model with local col-
lapse (30) for the first four jump counts. We also numerically
verified it for L̂ j = 1

2 (| j〉〈 j| + | j + 1〉〈 j + 1|) ⊗ |A〉〈B| (not
displayed).

We conclude this section with two remarks: (i) For a model
with the local collapse (30), and hz(p) = const, the steady-
state transport of (2) has been shown [52] to demonstrate the
topological switching, similar to our findings for the jump-
time evolution. We further conjecture that this steady-state
feature may also hold for other G(q) �= δ(q). However, there
is an important distinction between the steady-state transport
and the jump-time transport: The jump-time dynamics reflects
the topology at any stage of the evolution (given a homo-
geneous momentum distribution), and it also includes the
collective collapse G(q) = δ(q). (ii) In the case of more gen-
eral collapse models, e.g., with momentum-dependent jump
operators L̂ j (p), we must expect that the set of dark Hamil-
tonians and the invariant intracell state become momentum
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dependent. In such a case, the associated jump-time propa-
gator and jump-time phase will account for the momentum
dependencies of both the Hamiltonian and the jump operators,
calling for a correspondingly generalized geometric underpin-
ning.

VII. TWO-DIMENSIONAL LATTICES

Finally, we discuss how our theory is generalized to
two-dimensional two-band models. The Hamiltonian is
then given by Ĥ (2D) = ∮

d p1
∮

d p2 |p1〉〈p1| ⊗ |p2〉〈p2| ⊗
Ĥ (2D)( 	p), where the Bloch Hamiltonian reads

Ĥ (2D)( 	p) = hx( 	p)σx + hy( 	p)σy + hz( 	p)σz, (35)

with 	p = (p1, p2)T being a vector composed of the two lattice
momenta p1 and p2. Due to the topology of the Brillouin
zone, the Hamiltonian (35) now generically defines a toruslike
surface in the Bloch space.

We complement the Hamiltonian with a two-dimensional
collective collapse,

L̂(2D)
cc = 1∞ ⊗ 1∞ ⊗ |A〉〈B|. (36)

The set of dark Hamiltonians Hd = {Ĥ |Ĥ = hzσz, hz ∈ R}
then remains the same as in the one-dimensional case, co-
inciding with the z axis of the Bloch space. This gives rise
to a similar topological classification of Hamiltonians, based
on the winding of the toruslike Hamiltonian about the z axis.
However, due to the two-dimensional extension of the Bloch
Hamiltonian, the latter is now characterized by two topologi-
cal indices.

We introduce the two winding numbers (i, j ∈ {1, 2},
i �= j)

Wi[	h( 	p)|	ez] :=
∮

d p ja j

h

∮
d pi

2π

1

h2
⊥( 	p)

×
(

∂hx( 	p)

∂ pi
hy( 	p) − hx( 	p)

∂hy( 	p)

∂ pi

)
, (37)

associating separate topological indices with the two lat-
tice momenta. Note that we assign different lattice constants
a j to the conjugate spatial coordinates. Here, the integral
over p j has no effect on the outcome; that is, the same
winding number emerges for any value of p j . As in the one-
dimensional case, only Hamiltonians with h⊥( 	p) �= 0 ∀p1, p2

(i.e., Hamiltonians that avoid dark states) admit a topological
classification.

The resulting jump-time evolution (which is again re-
stricted to the A sublattice),

〈 	p|ρ (A)
n+1| 	p ′〉 = K (2D)

cc ( 	p, 	p ′)〈 	p|ρ (A)
n | 	p ′〉, (38)

is characterized by the jump-time propagator [h2
⊥( 	p) =

h2
x ( 	p) + h2

y ( 	p) �= 0 ∀p1, p2]

K (2D)
cc ( 	p, 	p ′) = 2h̄2γ 2[hx( 	p) + ihy( 	p)][hx( 	p ′) − ihy( 	p ′)]

2A2( 	p, 	p ′) + h̄2γ 2B( 	p, 	p ′)
,

(39a)

where we abbreviated

A( 	p, 	p ′) = h2
⊥( 	p) − h2

⊥( 	p ′) + h2
z ( 	p) − h2

z ( 	p ′)

+ ih̄γ [hz( 	p) + hz( 	p ′)]/2, (39b)

B( 	p, 	p ′) = h2
⊥( 	p) + h2

⊥( 	p ′) + h2
z ( 	p) + h2

z ( 	p ′)

+ ih̄γ [hz( 	p) − hz( 	p ′)]/2. (39c)

We remark that the propagator (39a)–(39c) is identical
to its one-dimensional counterpart for general hz(p) �= 0
[Eqs. (A1a)–(A1c)], with the replacement p → 	p.

In order to reveal the topological content of the two-
dimensional jump-time evolution described by the propaga-
tor (39a)–(39c), we define the two averaged jump-time phases
(i, j ∈ {1, 2}, i �= j)

T cc,i[	h( 	p)] :=
∮

d p ja j

h

∮
d pi

2π
Jcc,i( 	p), (40)

which we express here in terms of the jump-time connection

	Jcc( 	p) = i
[ 	∇	pK (2D)

cc ( 	p, 	p ′)
]

	p ′= 	p . (41)

If we evaluate the jump-time phases for the propagator (39a)–
(39c), we obtain

T cc,i[	h( 	p)] = Wi[	h( 	p)|	ez] + R1,i[	h( 	p)] + R2,i[	h( 	p)]. (42)

The residual terms are here given by (i, j ∈ {1, 2}, i �= j)

R1,i[	h( 	p)] = − 2

h̄γ

∮
d p ja j

h

∮
d pi

2π

∂hz( 	p)

∂ pi
ln

[
h2

⊥( 	p)

h̄2γ 2

]
,

(43a)

R2,i[	h( 	p)] =
∮

d p ja j

h

∮
d pi

2π

∂hz( 	p)

∂ pi

16h2
z ( 	p) + h̄2γ 2

4h̄γ h2
⊥( 	p)

.

(43b)

All four residual terms vanish if hz(−	p) = hz( 	p) and
h⊥(−	p) = h⊥( 	p), conditions which are satisfied by time-
reversal-symmetric two-dimensional Hamiltonians. While
hz( 	p) ≡ 0 (corresponding to chiral or PT symmetry) also
causes all four residual terms to vanish, the Hamiltonian is
then bound to the x-y plane of the Bloch space.

For example, let us consider a time-reversal-symmetric
Bloch Hamiltonian defined by (u, v,w > 0, v > w)

hx( 	p) = u + v cos
( p1a1

h̄

)
, (44a)

hy( 	p) = v sin
( p1a1

h̄

)
+ 2w sin

( p2a2

h̄

)
, (44b)

hz( 	p) = 2w cos
( p2a2

h̄

)
, (44c)

which can be considered as a two-dimensional generalization
of the SSH model. Its lattice representation and Bloch-space
representation are shown in Fig. 3. The corresponding real-
space Hamiltonian is given in Appendix E. Note that the
Bloch-space manifold degenerates to a “pinch” line in the x-z
plane. Similar to the SSH model, the first jump-time phase
experiences a topological phase transition at u = v, where

T cc,1[	h( 	p)] =
{−1, u < v

0, u > v.
(45)

In contrast, T cc,2[	h( 	p)] ≡ 0 for any parameter choice consis-
tent with v > w. Let us note that, in the general case, unlike
the example discussed above, the condition that the Bloch
Hamiltonian does not intersect with the dark Hamiltonians
may exclude an extended parameter range. For instance, in
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FIG. 3. (a) Real-space and (b)–(e) Bloch-space representation of
the two-dimensional Hamiltonian (44a)–(44c). The latter is formu-
lated with respect to the primitive translation vectors 	a1 and 	a2,
respectively. Depending on whether the set of dark-state-inducing
Hamiltonians (red line, coinciding with the z axis of the Bloch space)
is encircled (b) or not (c), the dissipative system is topologically
nontrivial (b) or trivial (c). The mesh lines indicate one-dimensional
loops of constant p1 (blue) and p2 (orange), respectively. The cor-
responding projections of the toruslike surfaces into the x-y plane
are shown in (d) and (e), respectively. Only the spatial coordinate x1

associated with the encircling momentum p1 can exhibit a nonvan-
ishing jump-time phase and thus topological transport. The chosen
parameters are v/w = 10 for both cases, and u/w = 6 for (b) and
(d) and u/w = 14 for (c) and (e), respectively. A different choice of
primitive translation vectors, e.g., 	a1 and 	a′

2, results in a transformed
Bloch Hamiltonian, while the transport behavior is invariant.

a modification of model (44a)–(44c), the parameter u may
be removed from the x component of the Hamiltonian and
added to the y component, instead. In this case, variation of
u would shift the toruslike surface along the y axis, and the
intersection with the z axis would occur over a finite interval
of u parameters.

As in the one-dimensional case, the topological nature
of the jump-time dynamics is directly observable in the
transport behavior and here extends to a topologically con-
trolled orientation of the bulk current. This is seen by
evaluating the expectation value of the position vector 〈	̂x〉 =
〈x̂1〉	a1/a1 + 〈x̂2〉	a2/a2, where x̂1 = ∑

j∈Z a1 j| j〉〈 j| ⊗ 1∞ ⊗
12 and x̂2 = 1∞ ⊗ ∑

j∈Z a2 j| j〉〈 j| ⊗ 12 are the discrete co-
ordinates (canonically conjugate to p1 and p2, respectively)
that parametrize the lattice in multiples of the primitive trans-
lation vectors 	a1 and 	a2, respectively. For the initial state ρ0 =
| j1,0〉〈 j1,0| ⊗ | j2,0〉〈 j2,0| ⊗ |A〉〈A|, this yields (i ∈ {1, 2})

〈x̂i〉n = ai ji,0 + ainT cc,i[	h( 	p)]; (46)

that is, for two-dimensional Hamiltonians that satisfy the sym-
metry constraints, the transport is topologically quantized.
Similar to the one-dimensional case, the topology can be
detected in a bulk property. It is clear that the generalization to
other collapse scenarios, e.g., localized collapse models, fol-
lows the same lines as in the one-dimensional case. Moreover,
it is clear that more than two spatial dimensions would result
in a similar topological classification.

It is worth mentioning that the topological transport is
invariant under the choice of the primitive translation vectors,
even though the Bloch Hamiltonian transforms under such
variation. For instance, if we rewrite a Bloch Hamiltonian
	h( 	p), which is based on the primitive translation vectors 	a1

and 	a2, with respect to the primitive translation vectors 	a′
1 =

	a1 and 	a′
2 = 	a2 + m	a1 (m ∈ Z), we obtain the Bloch Hamilto-

nian

	h′(p1, p2) = 	h
(

p1,
a′

2

a2
p2 − m

a1

a2
p1

)
. (47)

In Appendix E we demonstrate this for the Bloch Hamilto-
nian (44a)–(44c) with m = −1. The jump-time phases then
transform as

T cc,1[	h′( 	p)] = T cc,1[	h( 	p)] − mT cc,2[	h( 	p)] (48)

and T cc,2[	h′( 	p)] = T cc,2[	h( 	p)], and hence

T cc,1[	h′( 	p)] 	a′
1 + T cc,2[	h′( 	p)] 	a′

2

= T cc,1[	h( 	p)] 	a1 + T cc,2[	h( 	p)] 	a2. (49)

To illustrate the use of Eq. (48), let us consider the
following example. Assume that the Hamiltonian is time-
reversal symmetric; thus the jump-time phases coincide with
winding numbers in case of the two-dimensional collec-
tive collapse (36). If, in addition, T cc,1[	h( 	p)] = s ∈ Z and
T cc,2[	h( 	p)] = 1, we can switch to new primitive translation
vectors 	a′

1 = 	a1 and 	a′
2 = 	a2 + s	a1 for which only one jump-

time phase is nonvanishing. In other words, the topological
transport is directed along one of the primitive translation vec-
tors. We remark that, in cases where both jump-time phases
are nonvanishing, the one-dimensional loops with either p1

or p2 fixed each have a toroidal component, i.e., they wind
around the z axis, while they can in addition exhibit a poloidal
component.

As a final remark, we would like to point out that the jump-
time connection (41) allows us to define the curvature tensor
(i, j ∈ {1, 2})

�cc,i j ( 	p) = ∂

∂ pi
Jcc, j ( 	p) − ∂

∂ p j
Jcc,i( 	p). (50)

This is in analogy to the Berry curvature, which is defined in
terms of the Berry connection. However, the corresponding
Chern number, Ccc[	h( 	p)] = ∮ d p1

2π

∮ d p2

2π
�cc,12( 	p), vanishes

whenever h⊥( 	p) �= 0 ∀p1, p2 (the precondition for topological
classification), underscoring the different nature of the source
of topology.

VIII. EXPERIMENTAL REALIZATION

The rapid progress in the development of quantum pro-
cessing devices brings into reach the possibility of emulating
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the dynamics of complex quantum systems. While digital
quantum simulators will require error correction, near-term
analog quantum simulators (e.g., based on trapped ions or
superconducting circuits) can be expected to be able to sim-
ulate one- and two-dimensional single-particle lattice models
with local hoppings [e.g., the one-dimensional SSH model,
or the two-dimensional model (44a)–(44c)] for sufficiently
long evolution times to observe the topological properties
discussed here. For instance, trapped-ion systems have been
used to demonstrate environment-assisted quantum transport
in qubit networks [53,54], and superconducting qubits have
been deployed to reproduce the spectrum of two-dimensional
electrons in a magnetic field [55] (see also, e.g., Refs. [56,57]).

The quantum simulation of the dynamics of single-particle
models with local hoppings, while highly platform depen-
dent, follows standard lines. We thus focus here on the
implementation of the monitoring, which is required in or-
der to observe the jump-time evolution (3). For the sake of
concreteness, let us focus on the implementation of a one-
dimensional two-band lattice model, complemented by the
monitoring of the local collapse operators (30). Moreover,
let us assume that our quantum simulator consists of a one-
dimensional array of qubits, restricted to the single-excitation
subspace. An array of 2N qubits can then serve to emulate
a lattice consisting of N unit cells, and the basis states that
span the available Hilbert space are |1, B〉 = |11, 02, . . . , 02N 〉,
|1, A〉 = |01, 12, 03, . . . , 02N 〉, . . . , |N, A〉 = |01, . . . , 0, 12N 〉.
The local collapse operators (30) are then expressed in the
single-excitation subspace as

L̂(ses)
j = σ

( j,A)
+ ⊗ σ

( j,B)
− , j = 1, . . . , N, (51)

where σ
( j,A)
+ creates an excitation at the qubit representing the

A site of the jth unit cell and σ
( j,B)
− annihilates an excitation at

the qubit representing the B site of the jth unit cell.
One can show that the monitoring of the local collapse (51)

can be realized by complementing the qubit array with an
array of ancilla qubits. Importantly, this requires only a single
ancilla qubit per unit cell, and each ancilla qubit is coupled
only to the qubits that comprise its associated unit cell. The
system and ancilla qubits are coupled such that stroboscopic
repetitions of standard projective measurements on the ancilla
qubits effect the desired (quasi)continuous monitoring on the
system qubits. The repetition rate 1/�t of the ancilla measure-
ments is chosen such that �t is small compared to the typical
time scales of the system dynamics.

Specifically, after each time step �t , all ancilla qubits
(which initially are prepared in their ground states) are pro-
jectively measured in their canonical basis. By design of the
system-ancilla coupling, detecting the jth ancilla in its ex-
cited state |1( j,a)〉 then indicates the occurrence of a quantum
jump (51) at the jth unit cell, while the simultaneous detec-
tion of all ancillae in their ground states |0( j,a)〉 corresponds
to the “null outcome” of no quantum jumps occurring. The
probabilities for these events to occur are described by the
system-level positive operator-valued measure (POVM)

F̂j = γ�t L̂(ses)†
j L̂(ses)

j , j = 1, . . . , N, (52a)

F̂0 = 1 − γ�t
N∑

j=1

L̂(ses)†
j L̂(ses)

j , (52b)

where Tr[F̂jρt ] describes the probability for a quantum jump
at the jth unit cell, Tr[F̂0ρt ] represents the probability for
the “null outcome” of no jump detections, and ρt denotes
the system state at the time of the ancilla measurements.
Notice that �t must be chosen to be sufficiently small such
that (52b) represents a positive operator. Moreover, note that,
by construction, the simultaneous detection of more than one
ancilla in the excited state is highly suppressed and can thus
be neglected. We emphasize that, in the limit of sufficiently
small �t , this description is consistent with the dynamics of
the quantum trajectories (1). After each of the stroboscopic
ancilla measurements, all ancillae are reset into their ground
states.

The operational procedure to detect the transport in jump
time (34) is now as follows: The initial state is prepared as
a single, localized excitation in the center of the qubit ar-
ray. Subsequently, the monitoring is performed through the
above-described system-ancilla coupling. Immediately after
the detection of the desired number of quantum jumps (which
is chosen such that the system state has not yet been affected
by the lattice boundaries), the system qubits are all simulta-
neously subjected to projective readout measurements, which
locates the excitation in a single unit cell. Repeating this
protocol, from the preparation of the initial state to the final
readout, multiple times, the average position of the excitation
is then (if uncontrolled and hence detrimental environment-
coupling is negligible) described by the topology-controlled
transport (34).

IX. DISCUSSION AND CONCLUSIONS

We introduced a topological classification for translation-
invariant open quantum systems, based on the ensemble-
averaged behavior of the associated quantum trajectories
when read out at the jump times. The classification is
rooted in the sensitivity of the jump-time evolution to the
presence of dark states. Quantum trajectories that arrive at
dark states cease to exhibit quantum jumps, resulting in a
trace-decreasing jump-time evolution. To guarantee that each
trajectory exhibits an infinite chain of quantum jumps, we
thus exclude Hamiltonians that give rise to dark states. De-
pending on the choice of Lindblad operators, the space of
nondark Hamiltonians may then acquire nontrivial connec-
tivity, which can manifest itself as a topological contribution
to the jump-time phase. Since the jump-time phase is di-
rectly related to an observable bulk property, the transport
current, a hierarchy of topological phase transitions indexed
by the jump order n may be revealed through transport
measurements.

In contrast to topological pumping in closed quantum sys-
tems, this hierarchy of topological phase transitions is not a
consequence of periodic modulation, and can be also observed
in the transient behavior. While the jump-time-based topolog-
ical classification is not reliant on symmetry protection, i.e., it
can persist in the absence of Hamiltonian symmetries, generic
symmetry constraints, such as time-reversal invariance, ren-
der jump-time phase and transport entirely controlled by the
topological properties of the model.

The jump-time evolution and its associated topological
transport are observable in continuous monitoring schemes,
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which may be realized, for instance, in engineered quantum
systems including trapped ions, ultracold atoms in optical
lattices, or quantum simulators based on superconducting cir-
cuits.

We demonstrated the jump-time-based topological classi-
fication and the resulting topologically controlled transport
with one- and two-dimensional two-band models, extended
by, e.g., collective collapse L̂cc, sublattice projectors L̂A and
L̂B, and generalized localized translation-invariant versions
thereof, characterized by a momentum transfer distribution
G(q). We observe that the jump-time phase correctly dis-
criminates the respective topological transport behaviors for
these different choices of jump operators, in particular, also
when these different dissipative systems share the same ef-
fective (non-Hermitian) Hamiltonian. On the other hand, the
jump-time phase (and correspondingly the transport) reveals
an invariance under variation of the localization pattern G(q),
which extends the scope of admissible topological defor-
mations from the Hamiltonian domain into the domain of
Lindblad operators.

The introduced topological classification represents a dis-
tinct alternative to other classification schemes for dissipative
systems, e.g., based on (wall-time) steady states. It is built on
the physical requirement that all quantum trajectories exhibit
an infinite chain of quantum jumps, which here takes the role
of the spectral-gap requirement for closed quantum systems.
Notably, the collective collapse model features a topologi-
cal jump-time phase which is observable in the jump-time
transport, while the respective wall-time steady state fails to
display topological behavior. Being based on the jump-time
propagation, this topological classification is of intrinsically
dynamical nature and also does not merge with closed-system
classification schemes (which are based on the stationary
states of Hermitian Hamiltonians), not even in the limit of
small dissipation rate γ . Instead, the topological behavior
revealed here holds equally for any γ > 0 and can manifestly
diverge from the behavior predicted by the Hamiltonian alone,
as seen, e.g., for the SSH Hamiltonian complemented by
a sublattice projection (in which case the jump-time phase
vanishes for any choice of the staggered hoppings).

On the other hand, by virtue of its reference to quantum tra-
jectories, our classification connects to, can be compared with,
and extends topological classifications for non-Hermitian
(i.e., conditioned on no quantum jumps) quantum systems.
For instance, an exhaustive classification scheme for non-
Hermitian Hamiltonians has been introduced in Ref. [14].
It is primarily based on topological properties of the spec-
trum when considered as a continuous set in the complex
plane C. Proposed classes of non-Hermitian Hamiltonians
are based on topological connectivity characterizations of the
spectrum. Specifically, spectra with nontrivial connectedness
may, depending on their structure, be classified through “point
gaps” or “line gaps.” One finds, however, that the dark-state-
induced topology, encoded in our effective Hamiltonians, is
not naturally captured by these categories, as the connectivity
properties of the spectra of our effective Hamiltonians are
not related to the topological transport. To see this, let us
consider the effective Hamiltonian (17), with Ĥ being the
SSH Hamiltonian. We then observe that, for any choice v �= w

of the hopping parameters, the complex eigenvalues of the

effective Hamiltonian have a positive imaginary part, i.e., they
lie in the upper half of the complex plane. On the other hand,
at the transition, i.e., when v = w and the Hamiltonian is dark
state inducing, the spectrum touches the real axis. In other
words, the real axis, which may be seen as the most natural
candidate for a “line gap,” does not separate the spectrum with
respect to the two phases. While the more relevant criterion for
a transition in our context, namely, that the spectrum touches
the real axis, is not considered in Ref. [14], it may be closer in
spirit to the classification scheme discussed in Ref. [5].

Our findings indicate that the focus on quantum trajecto-
ries, captured by the jump-time evolution, may be beneficial
or possibly pivotal in characterizing the topology of the as-
sociated dissipative quantum systems, beyond the considered
frame, and irrespective of whether or not the trajectories are
realized by monitoring and the quantum jumps detected. Sim-
ilar to the Berry or Zak phase for closed quantum systems
based on eigenstates, the jump-time phase based on jump-
time propagators (with respect to invariant intracell states)
can serve as a platform for a general topological classification
beyond the considered cases, such as higher-dimensional in-
tracell spaces and/or momentum-dependent jump operators.

Our results demonstrate that, in jump time, the bulk trans-
port can serve as a reliable topology witness with potential for
applications: If realized under monitoring, one may conceive a
topologically controlled switching between different transport
behaviors that takes effect from one quantum jump to the next.
The questions of whether and how our topological classifica-
tion is in addition reflected by a bulk-edge correspondence we
leave for future research.
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APPENDIX A

Here, we describe the jump-time evolution for the Hamil-
tonian (4) in the most general case of hz(p) �= 0, and the
collective collapse operator (5).

The jump-time evolution, restricted to the A sublattice,
reads 〈p|ρ (A)

n+1|p′〉 = Kcc(p, p′)〈p|ρ (A)
n |p′〉, with the jump-time

propagator

Kcc(p, p′) =
∫ ∞

0
γ dτ 〈B|e− i

h̄ Ĥeff (p)τ |A〉〈A|e i
h̄ Ĥ†

eff (p′ )τ |B〉

= 2h̄2γ 2[hx(p) + ihy(p)][hx(p′) − ihy(p′)]
2A2(p, p′) + h̄2γ 2B(p, p′)

,

(A1a)
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where we abbreviated

A(p, p′) = h2
⊥(p) − h2

⊥(p′) + h2
z (p) − h2

z (p′)

+ ih̄γ
[
hz(p) + hz(p′)

]
/2, (A1b)

B(p, p′) = h2
⊥(p) + h2

⊥(p′) + h2
z (p) + h2

z (p′)

+ ih̄γ
[
hz(p) − hz(p′)

]
/2. (A1c)

As above, we require h2
⊥(p) = h2

x (p) + h2
y (p) �= 0 ∀p. Note

that here again Kcc(p, p) = 1, in agreement with normal-
ization. When hz = 0, as expected, Eq. (8) is recovered.
To obtain (A1a)–(A1c), we express the effective Hamil-
tonian as Ĥeff (p) = −ih̄ γ

4 12 + 	heff (p) · 	σ , with 	heff (p) =
(hx(p), hy(p), hz(p) + ih̄ γ

4 )T , and use

〈B|e− i
h̄
	heff (p)·	στ |A〉 = −i

τ

h̄
sinc

(τ

h̄
heff (p)

)
[hx(p) + ihy(p)],

(A2)

where h2
eff (p) = h2

⊥(p) + h2
z (p) − h̄2γ 2

16 + ih̄ γ

2 hz(p) and
sinc(z) = sin(z)

z .

APPENDIX B

For a generic Bloch Hamiltonian Ĥ (p), the jump-time
phase Tcc has nontopological contributions R1,2 defined by
Eqs. (13a) and (13b). Here, we demonstrate that, if the Bloch
Hamiltonian satisfies certain symmetries, the nontopological
terms vanish identically.

We start with time-reversal symmetry T . Under the action
of T , momentum changes sign, p → −p, and the Hamiltonian
is subject to complex conjugation. Consequently, the Hamil-
tonian Ĥ is said to possess time-reversal symmetry when the
following holds true:

T : Ĥ (p) = Ĥ∗(−p) ∀p. (B1)

This implies that

hx(p) = hx(−p), (B2a)

hy(p) = −hy(−p), (B2b)

hz(p) = hz(−p). (B2c)

In other words, hx,z(p) must be even functions of p, while
hy(p) is odd, which results in vanishing R1,2. Indeed, it is
easy to check that h2

⊥ is even, while ∂hz/∂ p is odd. Thus the
integrands in Eqs. (13a) and (13b) are odd, and the integrals
are both zero.

Spatial inversion symmetry P , on the other hand, does not
guarantee the nullification of the nontopological terms. Under
the action of P , momentum changes sign, p → −p, and the
sublattices switch, A ↔ B. Therefore the system is invariant
relative to the spatial inversion when its Hamiltonian satisfies

P : Ĥ (p) = σxĤ (−p)σx ∀p, (B3)

which is equivalent to

hx(p) = hx(−p), (B4a)

hy(p) = −hy(−p), (B4b)

hz(p) = −hz(−p). (B4c)

These relations are insufficient to argue that R1,2 vanish.
Indeed, they imply that the integrands in Eqs. (13a) and (13b)
are even, and we cannot claim that R1,2 = 0.

Next, we consider PT symmetry (invariance after simul-
taneous inversion of both the spatial coordinate and the time
direction). We demand that

PT : Ĥ (p) = σxĤ∗(p)σx ∀p. (B5)

A Hamiltonian satisfies this equality when

hz(p) = −hz(p), (B6)

which further implies

hz(p) ≡ 0. (B7)

Identical nullification of hz guarantees that both nontopologi-
cal terms vanish.

Finally, we discuss chiral symmetry. A Hamiltonian Ĥ
possesses chiral symmetry S if

S: σzĤ (p)σz = −Ĥ (p) ∀p. (B8)

Speaking informally, a Hamiltonian satisfies this requirement
when intrasublattice terms are absent and only intersublattice
hopping terms are present. It is easy to check that Eq. (B7) is
both necessary and sufficient for Ĥ to exhibit chiral symmetry.
This means that any chirally symmetric Hamiltonian is also
PT symmetric, and the reverse is also true. Consequently, the
nontopological terms are absent for a chiral Hamiltonian.

APPENDIX C

We describe the jump-time evolution for the Hamilto-
nian (4) with h2

⊥(p) = h2
x (p) + h2

y (p) �= 0 ∀p, complemented
by the sublattice projector L̂A = 1∞ ⊗ |A〉〈A|. For simplicity,
we specify to hz(p) ≡ 0.

The jump-time evolution, restricted to the A sublattice,
reads 〈p|ρ (A)

n+1|p′〉 = KA(p, p′)〈p|ρ (A)
n |p′〉, with the jump-time

propagator

KA(p, p′) =
∫ ∞

0
γ dτ 〈A|e− i

h̄ Ĥeff (p)τ |A〉〈A|e i
h̄ Ĥ†

eff (p′ )τ |A〉

= h̄2γ 2[h2
⊥(p) + h2

⊥(p′)]
2[h2

⊥(p) − h2
⊥(p′)]2 + h̄2γ 2[h2

⊥(p) + h2
⊥(p′)]

.

(C1)

Note that KA(p, p) = 1, in agreement with normalization.
The respective jump-time propagator for the sublattice
projector L̂B = 1∞ ⊗ |B〉〈B| reads identically, 〈p|ρ (B)

n+1|p′〉 =
KB(p, p′)〈p|ρ (B)

n |p′〉 with KB(p, p′) as in (C1). To obtain (C1),
we write Ĥeff (p) = −ih̄ γ

4 12 + hx(p)σx + hy(p)σy − ih̄ γ

4 σz

and use exp(−i	a	σ ) = cos(a)12 − i sinc(a) 	a · 	σ , where

sinc(x) = sin(x)
x and a =

√
a2

x + a2
y + a2

z .

APPENDIX D

We determine the steady state of the master equation (2) for
the Hamiltonian (4) and the collective collapse operator (5),
and evaluate its transport behavior. For simplicity, we restrict
ourselves to the case hz(p) ≡ 0.
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Since both Ĥ and L̂cc are diagonal in the momen-
tum basis, the steady state ρss of the master equation (2)
is easily obtained in momentum representation, ρss =∮

d p 〈p|ρex,0|p〉|p〉〈p| ⊗ ρin(p), where 〈p|ρex,0|p〉 denotes the
momentum distribution of the initial state. In Bloch represen-
tation, the internal density matrix component ρin(p) = 1

2 (12 +
	rss(p) · 	σ ) reads

	rss(p) = h̄γ /2

h2
⊥(p) + h̄2γ 2/8

⎛
⎝ hy(p)

−hx(p)
h̄γ /4

⎞
⎠. (D1)

To evaluate the transport behavior, we further specify to the
SSH model and determine the expectation value of the single-
particle cross-section current Ĵ = −iw(| j + 1, B〉〈 j, A| −
| j, A〉〈 j + 1, B|). Note that the steady state is translation in-
variant and therefore 〈Ĵ〉ss is independent of j. Assuming a
localized initial state, ρex,0 = | j0〉〈 j0| or 〈p|ρex,0|p〉 = a/h,
we obtain

〈Ĵ〉ss = γ h̄

4

(
1 + w2 − v2 − γ 2h̄2/8

[(w2 − v2 − γ 2h̄2/8)2 + w2γ 2h̄2/2]1/2

)
.

(D2)

The current is finite at any parameter values and exhibits a
smooth crossover from 〈Ĵ〉ss = γ h̄/2 at w � v to 〈Ĵ〉ss = 0
at v � w. The width of the crossover is controlled by γ .
Only in the limit γ → 0 is the topological transition at v = w

recovered.

APPENDIX E

We here give the real-space Hamiltonian corresponding to
the Bloch Hamiltonian (44a)–(44c). They are related through
the basis transformation 〈 jk|pk〉 = √

ak/h exp(i jkak pk/h̄),
k = 1, 2. The Hamiltonian expressed in terms of the position
basis reads

Ĥ (2D) = u
∑

j1, j2∈Z

| j1, j2〉〈 j1, j2| ⊗ σx

+ v
∑

j1, j2∈Z

[
| j1, j2〉〈 j1 + 1, j2| ⊗ 1

2
(σx + iσy)

+ | j1, j2〉〈 j1 − 1, j2| ⊗ 1

2
(σx − iσy)

]

+ w
∑

j1, j2∈Z

[| j1, j2〉〈 j1, j2 + 1| ⊗ (σz + iσy)

+ | j1, j2〉〈 j1, j2 − 1| ⊗ (σz − iσy)]. (E1)

The Hamiltonian (E1) employs coordinates that are based
on the primitive translation vectors {	a1, 	a2}; cf. Fig. 3. If we
alternatively use the primitive translation vectors 	a′

1 = 	a1 and
	a′

2 = 	a2 − 	a1, we obtain the Hamiltonian

Ĥ ′(2D) = u
∑

j1, j2∈Z

| j1, j2〉〈 j1, j2| ⊗ σx

+ v
∑

j1, j2∈Z

[
| j1, j2〉〈 j1 + 1, j2| ⊗ 1

2
(σx + iσy)

+ | j1, j2〉〈 j1 − 1, j2| ⊗ 1

2
(σx − iσy)

]

+ w
∑

j1, j2∈Z

[| j1, j2〉〈 j1 + 1, j2 + 1| ⊗ (σz + iσy)

+ | j1, j2〉〈 j1 − 1, j2 − 1| ⊗ (σz − iσy)], (E2)

with the corresponding Bloch representation

h′
x( 	p) = u + v cos

( p1a1

h̄

)
, (E3a)

h′
y( 	p) = v sin

( p1a1

h̄

)
+ 2w sin

(
p1a1 + p2a′

2

h̄

)
, (E3b)

h′
z( 	p) = 2w cos

(
p1a1 + p2a′

2

h̄

)
. (E3c)

Comparing (44a)–(44c) and (E3a)–(E3c), we find the trans-
formation 	h′(p1, p2) = 	h(p1,

a′
2

a2
p2 + a1

a2
p1).

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
Topological insulators and superconductors: Tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[4] J. K. Asbóth, L. Oroszlány, and A. Pályi, A short course on
topological insulators, Lect. Notes Phys. 919, 87 (2016).

[5] M. S. Rudner and L. S. Levitov, Topological Transition in a
Non-Hermitian Quantum Walk, Phys. Rev. Lett. 102, 065703
(2009).

[6] S. Malzard, C. Poli, and H. Schomerus, Topologically Protected
Defect States in Open Photonic Systems with Non-Hermitian
Charge-Conjugation and Parity-Time Symmetry, Phys. Rev.
Lett. 115, 200402 (2015).

[7] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori,
Edge Modes, Degeneracies, and Topological Numbers in Non-
Hermitian Systems, Phys. Rev. Lett. 118, 040401 (2017).

[8] L. Campos Venuti, Z. Ma, H. Saleur, and S. Haas, Topological
protection of coherence in a dissipative environment, Phys. Rev.
A 96, 053858 (2017).

[9] Z. Gong, S. Higashikawa, and M. Ueda, Zeno Hall Effect, Phys.
Rev. Lett. 118, 200401 (2017).

[10] S. Yao and Z. Wang, Edge States and Topological Invariants of
Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018).

[11] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J.
Bergholtz, Biorthogonal Bulk-Boundary Correspondence in
Non-Hermitian Systems, Phys. Rev. Lett. 121, 026808 (2018).

[12] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa,
and M. Ueda, Topological Phases of Non-Hermitian Systems,
Phys. Rev. X 8, 031079 (2018).

023036-12

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1007/978-3-319-25607-8
https://doi.org/10.1103/PhysRevLett.102.065703
https://doi.org/10.1103/PhysRevLett.115.200402
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevA.96.053858
https://doi.org/10.1103/PhysRevLett.118.200401
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevX.8.031079


UNRAVELING THE TOPOLOGY OF DISSIPATIVE … PHYSICAL REVIEW RESEARCH 4, 023036 (2022)

[13] Y.-X. Wang and A. A. Clerk, Non-Hermitian dynamics with-
out dissipation in quantum systems, Phys. Rev. A 99, 063834
(2019).

[14] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symme-
try and Topology in Non-Hermitian Physics, Phys. Rev. X 9,
041015 (2019).

[15] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-Hermitian
Boundary Modes and Topology, Phys. Rev. Lett. 124, 056802
(2020).

[16] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv.
Phys. 69, 249 (2020).

[17] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A.
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